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Presentation outline
▪ OPTIMAI overview

▪ From ZDM to Industry 5.0

▪ Defect detection and prediction

▪ DSS and actuation

▪ “XRay” Vision and XR for human-machine 
collaboration



OPTIMAI overview
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OPTIMAI Concept

› Production 
instrumentation with 
smart sensors.
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› Middleware layer for 
real-time data 
collection.

› AI methods for early 
detection.

› Digital Twins for 
production optimization 
and reconfiguration.

› Human-machine 
collaboration through 
XR technology and 
“XRay” vision.



From ZDM to Industry 5.0



› Bridge defect detection & prediction

› Deep Learning models for real-time defect detection & 
prediction

› Closed loop control for ZDM via Reinforcement Learning

› Generative modelling for Digital Twins generation.

› DSS and Actuation

› DSS for real-time monitoring and defect detection.

› Smart Actuation keeping Human-in-the-Loop.

› Active Learning

› Active Learning for fast deployment, dealing with data 
scarcity.

› XR and “XRay” Interfaces 

› XR as an enabler for human-machine interaction and 
production (re)-configuration.

› "XRay" vision providing insights into component integrity 
and potential defects.

From ZDM to Industry 5.0
DSS - 
Defect 

Detection

Generative 
Modeling

Active 
Learning

Extended 
Reality



(Semi)-automatic calibration of 
valve block in elevator 
manufacturing – KLEEMANN pilot
• Production (Re)-configuration

• XR for human-machine collaboration

• Defect Detection

• Decision Support System



Production (Re)-
configuration
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Applied in Elevator Manufacturing
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KLEEMANN
Production (Re)-configuration - Use Case Description

Valve Block: The 
hydraulic Elevator 
Control Valves (EVs) 
control the movement of 
the elevator.

KLEEMANN
Valve block that 
controls the lift

KLEEMANN
Testing workstation 

Testing 
workstation: EVs 
are connected to 
weights that simulate 
the movement of the 
elevator.

KLEEMANN
Elevator velocity 
reference curve

KLEEMANN
Optimal downward 

movement

• An experienced operator 
manually adjusts the valves 
to achieve the desired motion.

• The intended movement 
depends on the type of the 
elevator, maximum load, user 
requirements, etc. 



› We create a Digital Twin (DT) of the process using 

Generative AI by simulating the movement given 

the velocity curve.

› To this end, we develop a Soft Sensor (SS) that acts 

directly on the captured RGB frames using Deep 

Learning (DL) to collect training data.  

› A lightweight residual architecture is used to 

achieve real-time soft sensing performance. 
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KLEEMANN
Production (Re)-configuration - Digital Twinning

Initial frames Transformed frames

Input curve Generated data
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KLEEMANN
Production (Re)-configuration - Reinforcement Learning (RL) 

› We use Reinforcement Learning (RL) to automatically calibrate the 
parameters of the valve block.

1. The DIgital Twin of the process is used for data augmentation. 

2. The Soft Sensor is used to estimate the reward in real time. 

Current 
velocity – soft 
sensing output

Intended velocity 
based on client’s 
order

R = - (Velocity – Reference)2 

Initial curve Calibrated curve

RL 
Agent



XR interfaces for human-
machine collaboration
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Applied in Elevator Manufacturing



KLEEMANN 
(Semi) Automatic Calibration - Gesture Based Production Configuration
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Bill of materials visualization (BoM)

Identify motor & choose direction

Arduino motor actuation

Client order validation scenario

› Cross-check between the 

produced parts and the parts 

referred to the client’s order 

› Visualized list of parts for 

validation and order status

Valve block calibration scenario

› Numbers 1-3: Used to identify which motor to move

› Scroll hand left/right: used to choose the direction 

of the motor movement

› Static fist: stop calibration for the chosen motor

› OK: calibration complete



Decision Support System
Applied in Elevator Manufacturing
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KLEEMANN
DSS - Monitoring
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The users monitor data streams in real-time.

• Users have the flexibility to incorporate 

Predictions as reference into their testing

• In the example, after completion of the first 

testing stage (upward motion), the defect 

detection outcome is displayed, classifying the 

result as either "Normal" or "Abnormal"

• This classification provides users with insights 

into the testing outcome, facilitating informed 

decision-making

Upward motion Downward motion



KLEEMANN
DSS - Prediction
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Controlling glue dispensing in 
micro-electronics – 
MICROCHIP pilot
• Defect Detection

• XR Interfaces 

• Decision Support System



Defect Detection
Applied in Microelectronics
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MICROCHIP
Defect Detection - Use Case Description

› An industrial process that generates defects is the dispensing of glue on Printed Circuit Boards (PCBs).

› The defects are the dispensing of insufficient or excessive amount of glue.

› Problem: Identification of such defects is a time-consuming and error-prone process. 

  

› Solution: Develop an automatic inspection system that uses RGB images. 
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ExcessiveInsufficient  Normal
Printed Circuit 

Board (PCB) with 
18 circuit modules

A. Evangelidis, N. Dimitriou, L. Leontaris, D. Ioannidis, G. Tinker and D. Tzovaras, "A Deep Regression Framework Toward Laboratory Accuracy in 
the Shop Floor of Microelectronics," in IEEE Transactions on Industrial Informatics, vol. 19, no. 3, pp. 2652-2661, March 2023.



MICROCHIP 
Defect Detection – XR Visualization
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• Low LoD widget (Left image) : 
• excessive and rejectable
• insufficient and rejectable
• excessive and acceptable
• insufficient and acceptable
• normal

• High LoD widget (Right image): 
• representation of glue positions
• glue’s quantity is represented by color 

(green, yellow, red)



MICROCHIP 
Defect Detection – XR Visualization
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“XRay” Vision
Applied in Microelectronics
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MICROCHIP
“XRay” Vision - Overview
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› Functionality: a) real-time inspection of sealed machines, 

b) minimization of human intervention in difficult to reach 

areas, c) minimization of unneeded stoppages

› Sensors: AR glasses camera and RGB-D camera

› Input: RGB image and depth data

› Output: The projected 3D bounding box of the object onto 

the AR glasses



Decision Support System
Applied in Microelectronics
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MICROCHIP
DSS - Defect Detection
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Initiate defect detection or 
running automatically 

Retrain AI model

Results

If a PCB is Defective, 
the user can send it 
to the Marketplace 
(for scrap) and store 
the data to the 
Blockchain

The second Tab of the 
Defect Detection
PCB Routing

Annotation mode



MICROCHIP 
DSS - Analysis

Shopfloor sensors 
monitoring

Defect detections

Active Learning model 
performance gain from 

retraining

Yield



Antenna bending –
 TELEVES pilot
• Defect Detection & Prediction

• Decision Support System & Actuation



Defect Detection
Applied in Antenna Manufacturing
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TELEVES
Use Case Description

› The problem

› During antenna manufacturing, geometric 

deviations & cracks are generated.

› Data from defective antennas are scarce.

➢What we do:

➢ We use a DL model to inspect RGB images, 

passing through the production line

➢ We use Generative Adversarial Networks to 

combat data scarcity and train inspection networks

➢ We achieved 20% increased performance in 

under-represented classes
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Ηydraulic press 
cell

Broken End and 
Broken Rod 

Defect 
Generation 
using GANs

Folding Error Image 
Generation Using 

GANs

Antenna 
defects



TELEVES
Defect Detection

› The proposed architecture follows the procedure 

below

1. A robot arm places the antenna for inspection.

2. Two machine vision sensors capture images  
above and below the antenna.

3. The robot arm and the sensor are synchronized 
using a hardware triggering mechanism.

4. The antenna’s images are acquired by the sensors.

5. The AI model performs an analysis.

6. The AI results include localized information about 
the defects on the image.

7. Upon identifying a defect sample, the robotic arm 
automatically removes it from the production line.
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DSS
Visualization

Proposed 
Architecture

Antenna line 
monitoring – 
two machine 
vision sensors

DSS 
visualization

Leontaris, L., Mitsiaki, A., Charalampous, P., Dimitriou, N., Leivaditou, E., 
Karamanidis, A., Margetis, G., Apostolakis, K. C., Pantoja, S., Stephanidis, 
C., Tzovaras, D., & Papageorgiou, E. (2023). A blockchain-enabled deep 
residual architecture for accountable, in-situ quality control in industry 
4.0 with minimal latency. In Computers in Industry (Vol. 149, p. 103919).



Defect Prediction
Applied in Antenna Manufacturing
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TELEVES
Defect Prediction

➢ Problem: The cause of the defects is the misplacement of the 

antenna body on the bending surface

➢ This process can lead to excessive stress and strain development 

that can cause cracks on the antenna

➢ The prediction of such defects required the use of expensive and 

time-intensive simulation software

➢ Solution: Developed an prediction system that utilizes a 

Convolutional Neural Network (CNN) to synthesize simulations 

similar to the ones produced by a typical simulation software

› Knowledge distillation from Finite Element Method (FEM) to CNN

› This drastically reduces simulation time and cost, from 5-6 hours to 

close to 10 seconds.

› Through XR the user can compare real and simulated defects for 

enhanced decision-making

› We create Digital Twins of antenna manufacturing with Generative AI
33

Simulation results through XR interface

Real Simulation Predicted



Decision Support System
and Active Learning
Applied in Antenna Manufacturing
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TELEVES
DSS and XR interface
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Recommendations 
- The end user gets 
recomendations to 
act when a defect 
antenna is found

Results

Details: Number 
of defective 
Areas,
Number of 
Defects,
Categories of 
Defetcs

Retrain AI model

DSS and 
Actuation

Defect 
Detection

XR interface – auto inspection

XR interface – manual inspection



TELEVES
Active Learning

› The active learning can be divided into 3 main 

sections

1. User Annotation: The end-user, via the DSS 

annotation mode, examines the model’s results 

and selects a subset of the inspected samples. 

The selected subset is manually annotated by the 

end-user and forwarded to the active learning 

module.

2. Active Learning (AL) Module: The re - annotated 

results are used to retrain the antenna inspection 

model.

3. DSS Visualization: The evaluation metrics from 

the active learning module are displayed through 

the visualizations in the DSS Analysis tab.
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Flowchart of the 
annotation and retraining 

processes used in the 
Active Learning module

Through AL performance increases from 60% to 83%



Conclusions
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› Reduced instrumentation complexity and cost through soft 
sensing.

› Exploited Generative AI to create Digital Twins and 
optimize production.

› Reduced human intervention and unneeded stoppages with  
“XRay” vision.

› Human-machine collaboration for continuous production 
improvement through a DSS.

› Capturing human expertise with Active Learning to 
accelerate AI training.

› Enhance workers abilities and improve working conditions 
with XR.
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Conclusions
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