

Social industrial collaborative environments integrating AI, Big Data and Robotics for smart manufacturing - CONVERGING

7 May 2024

Nikos Dimitropoulos, LMS

dimitropoulos@Ims.mech.upatras.gr

HEU - TT 101058521

Contents

- CONVERGING Participants
- CONVERGING Motivation
- CONVERGING Objectives
- CONVERGING Use cases
- CONVERGING WorkPackages

CONVERGING Participants

		Chart		0
	Participant organization name	Short Name	Country	Organization type
1	UNIVERSITY OF PATRAS	LMS	GREECE	RTO
2	FUNDACION TECNALIA RESEARCH & INNOVATION	TECNALIA	SPAIN	RTO
3	ELECTROLUX ITALIA SPA	ELUX	ITALY	END USER
4	ISRAEL AEROSPACE INDUSTRIES LTD	IAI	ISRAEL	END USER
5	COMAU SPA	COMAU	ITALY	INDUSTRIAL
6	PILZ INDUSTRIEELEKTRONIK SL	PILZ	SPAIN	INDUSTRIAL
7	FRAUNHOFER GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHUNG EV	IPK	GERMANY	RTO
8	ASOCIACION DE INVESTIGACION METALURGICA DEL NOROESTE	AIMEN	SPAIN	RTO
9	NETCOMPANY-INTRASOFT SA	INTRA	LUXEMBO URG	INDUSTRIAL
10	PRIMA ADDITIVE SRL	PRIMA	ITALY	END USER
11	VISUAL COMPONENTS OY	VIS	FINLAND	INDUSTRIAL
12	FORD ESPANA SL	FORD	SPAIN	END USER
13	ITERA SOLUCIONES DE INGENIERIA SL	ITERA	SPAIN	INDUSTRIAL
14	TEACHING FACTORY COMPETENCE CENTER	TF-CC	GREECE	INDUSTRIAL
15	KAWADA ROBOTICS CORPORATION	KAWADA	JAPAN	RESEARCH

- 16 partners
- 9 countries

UK

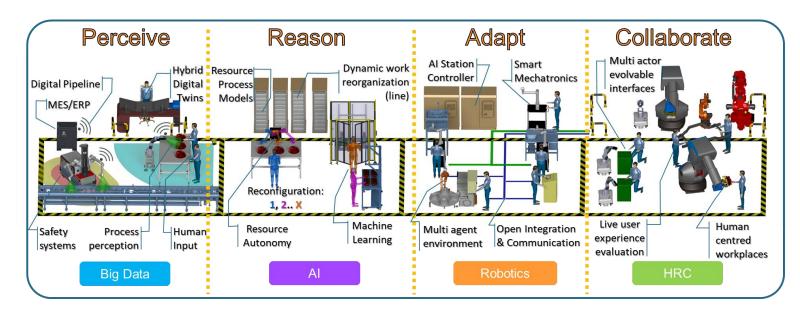
RESEARCH

CU

CRANFIELD UNIVERSITY

CONVERGING Motivation

- > tremendous **challenge**s on the manufacturing firms due to **global scale occurrences** including economic crisis and an unprecedented pandemic.
- both human and automated resources that can work together seamlessly or mutually exchange tasks, allowing the execution of any process plan in more than one, non-predetermined ways
- > significant breakthroughs that can support flexible production in smart factory setups
 - **Perceive**: Identify and recognize, process, resources, environment and their actual status
 - **Reason**: Analyze the status of production system and autonomously formulate plan of actions
 - Adapt: Automatically apply modifications to h/w and control systems to execute formulated plan
 - Collaborate: Seamlessly work with humans or other resources to achieve high quality/ performance
 - Innovate: Expand capabilities through allowing introduction of new technologies and Openness


CONVERGING vision is:

"to develop, deploy, validate and promote smart and reconfigurable production systems including multiple autonomous agents (collaborative robots, AGVs, humans) that are able to act in diverse production environments. The diversifying factors will be a multi-level AI based cognition (line, station, resource levels) which will exploit the collective perception (Digital Pipeline) of these resources, allowing them to interact with each other and seamlessly coexist with humans under a «social industrial environment» that ensures trustful, safe and inclusive user experience"

CONVERGING Objectives

- Objective O1: Implementing a highly reconfigurable production system by deploying collaborative robotics and smart mechatronic devices, relying on multi-level AI to achieve autonomy
- Objective O2: Providing open and standard means to interconnect all production entities (Big Data pipeline) for real time capturing (Digital Twin), storing (Data at Rest) and processing (Data in Motion) to support autonomous and collaborative behaviour with minimal user intervention
- Objective O3: Establishing a human centered social-industrial environment where all activities and interactions with humans are dynamically shaped to maximize user experience, trust, skills & safety
- Objective O4: Providing the software and hardware interfaces to ensure safe and seamless interaction with collaborative robotic solutions, minimizing learning curves and setup times
- Objective O5: Create innovation ecosystem through a network of open Pilot Lines - involving robotic application stakeholders, SMEs and RTOs to inspire further development and deployment

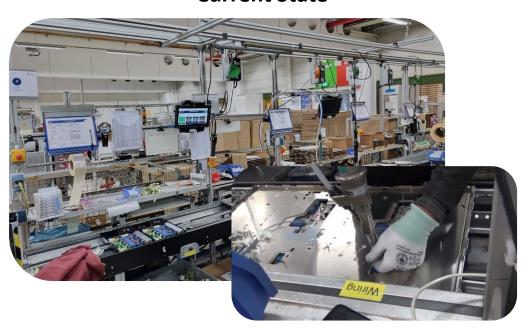
Automotive use case - FORD

CONVERGING HEU - TT 101058521

Current State

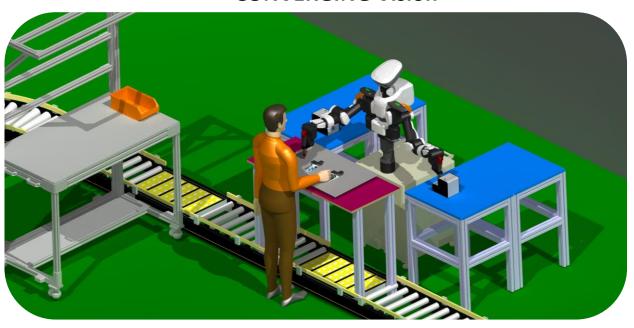
- Polishing of stamping dies
- Manual work
- Labor intensive operations ergonomic issues
- Subjective evaluation of polishing result

CONVERGING Vision



- Robotized polishing of stamping dies
- Human robot collaboration
- Operator to mark the areas to be polished
- Mobile/stationary robot to automatically polish the marked areas
- Quality control

White goods use case - ELUX

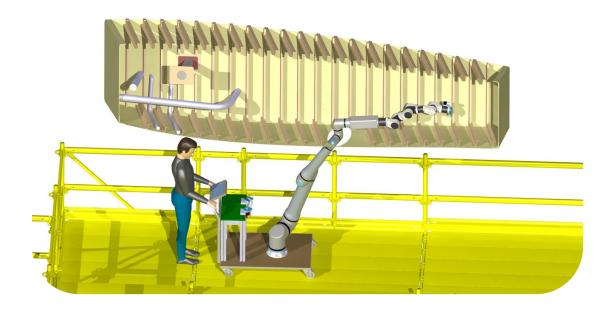

CONVERGING HEU - TT 101058521

Current State

- Assembly of kitchen hobs
- Manual work
- Labor intensive operations ergonomic issues
- Productivity constraints

CONVERGING Vision

- Human robot collaborative assembly
- Humanoid dual arm robot
- Space and part sharing
- Identification of human actions prediction
- Advanced environment and process perception


Aeronautics use case - IAI

CONVERGING HEU - TT 101058521

Current State

CONVERGING Vision

- Inspection and maintenance of aircraft fuel tanks
- Manual work
- Exposure of humans to hazardous environment
- Quality assurance issues human errors

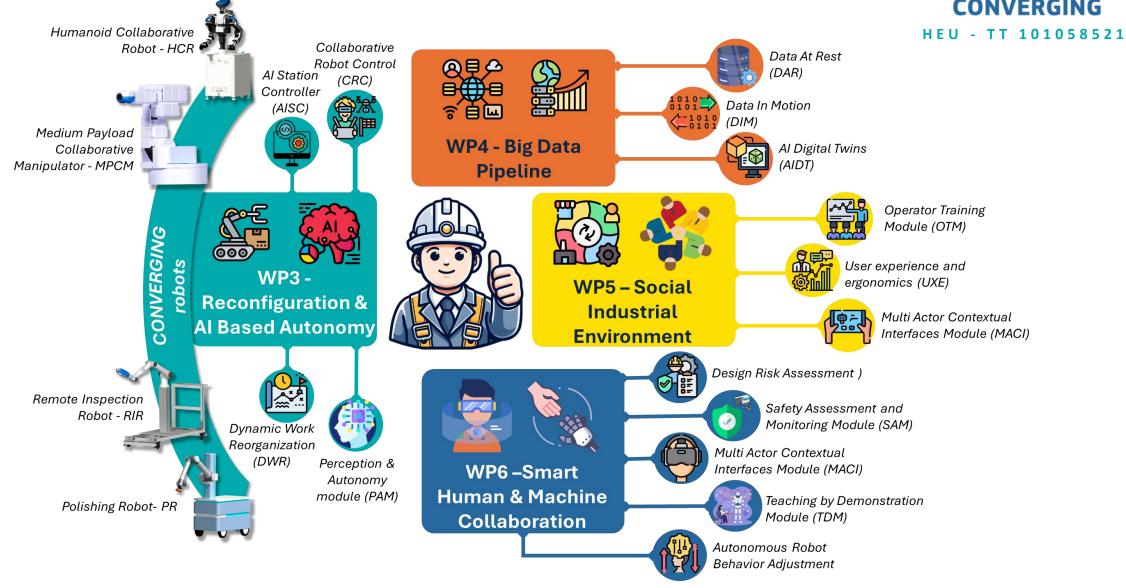
- Robotized inspection and maintenance of fuel tanks
- Remote monitoring teleoperation
- Operator support via advanced AR interfaces
- Operator to intervene in situ when needed

Additive manufacturing use case - PRIMA

HEU - TT 1010585

Current State

- Manual work
- Exposure of humans to hazardous substances
- Quality assurance issues defects due to human work



- Human robot collaborative post processing
- Robotized blowing of powder teleoperation possible
- AGV for logistics tasks
 - Medium payload robot to act as work holding device operator to perform support removal tasks
- Human action perception automatic robot pose adaptation

CONVERGING Modules

CONVERGING Reconfiguration & AI Based Autonomy

HEU - TT 101058521

WP3

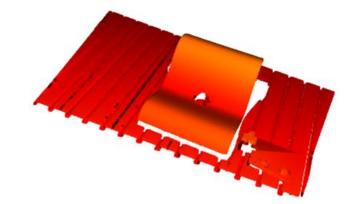
Reconfiguration & AI Based Autonomy

Dynamic work reorganization

Al enabled station controller

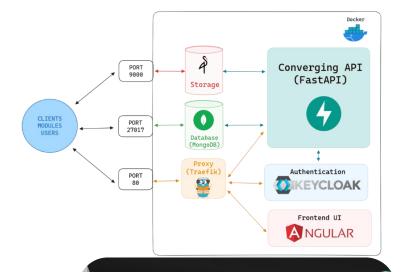
Resource level autonomy – perception, learning, adaptation

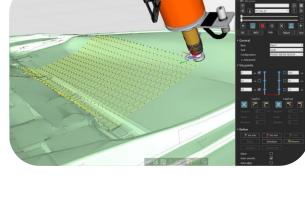
Reconfigurable production – smart interconnected production entities

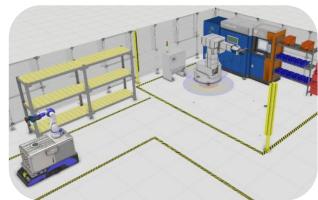


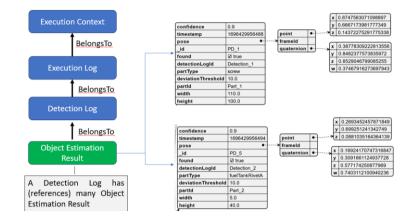
CONVERGING Big Data Pipeline

HEU - TT 101058521


WP4


Big Data Pipeline

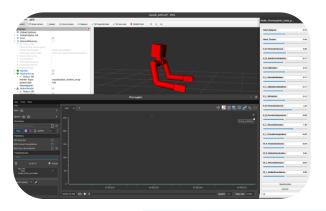

Data at rest – modelling/digital representation

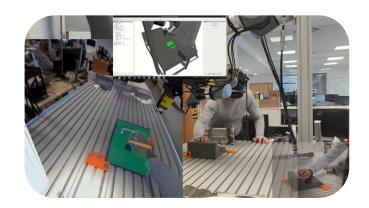

Data in motion – data fusion

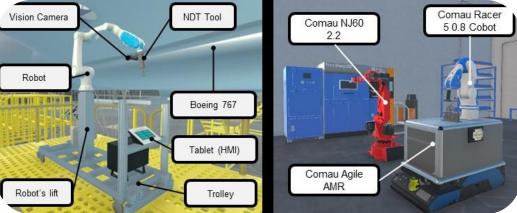
Open integration and communication architecture

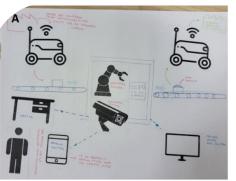
CONVERGING Big Data Pipeline

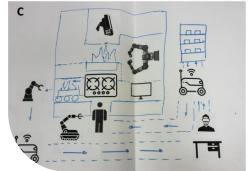
WP5

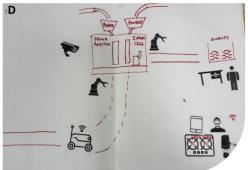

CONVERGING Social- Industrial Environment


Operators training


Real-time UX and ergonomics evaluation


Multi-actor contextual interfaces


Human centric design

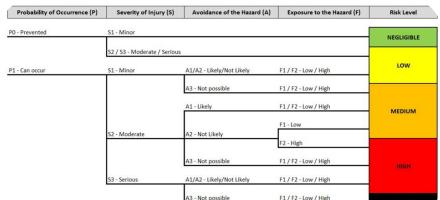


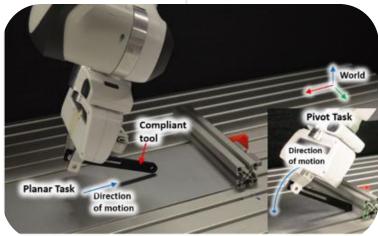
CONVERGING Big Data Pipeline

HEU - TT 101058521

WP6

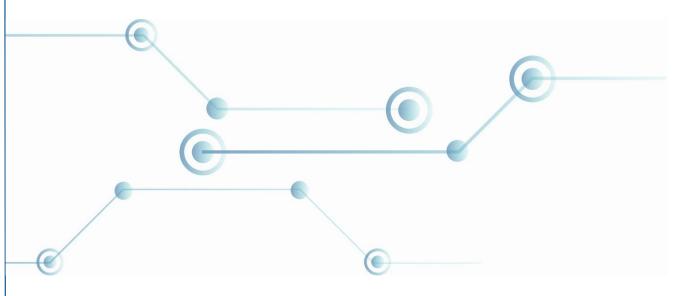
Smart Human-Machine Collaboration (HMC)


Design Risk Assessment


Adaptive human-machine interaction

Teaching by demonstration

Autonomous learning strategies for robot behaviour adjustment



Thank you for your attention!

Nikos Dimitropoulos – LMS dimitropoulos@lms.mech.upatras.gr

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No 101058521.

HEU - TT 101058521

Converging EU Project

@converging_euproject

@ConvergingEu

Converging EU Project

Converging EU Project