

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No. 101091903.

Co-funded by the European Union

www.flex4res.eu

Project overview

Data Spaces for **Flex**ible Production Lines and Supply Chains **for Res**ilient Manufacturing

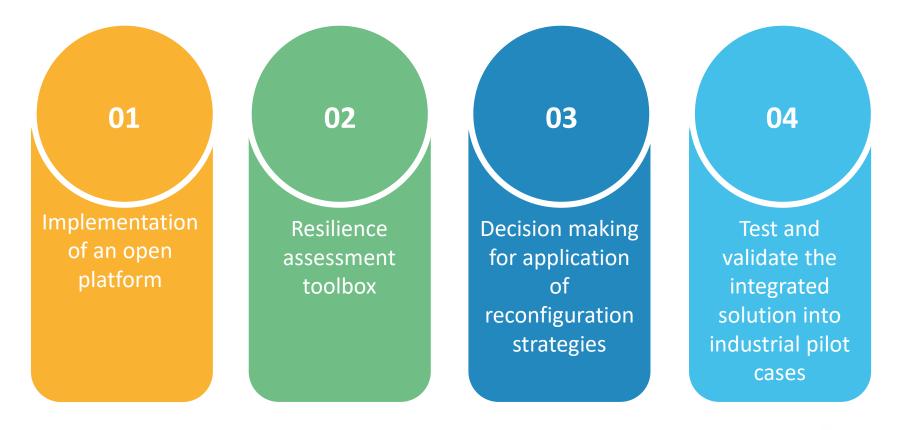
Dr. Kosmas Alexopoulos alexokos@lms.mech.upatras.gr

Emmanouil Bakopoulos

bakopoulos@lms.mech.upatras.gr

MS

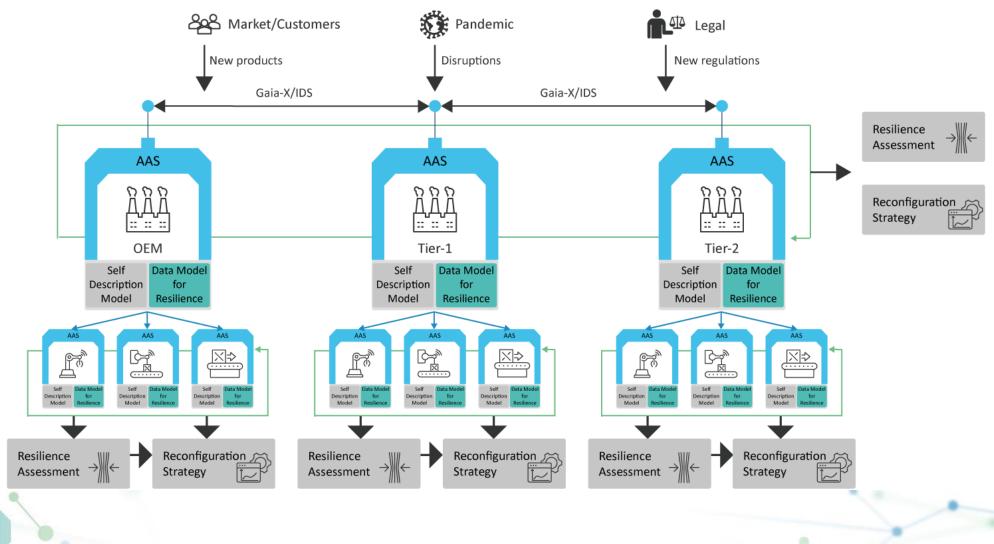
Call: HORIZON-CL4-2022-TWIN-TRANSITION-01 **Type of action:** HORIZON Innovation Actions Starting date: 1 January 2023 End date: 31 December 2025 Duration: 36 months


14/05/2024

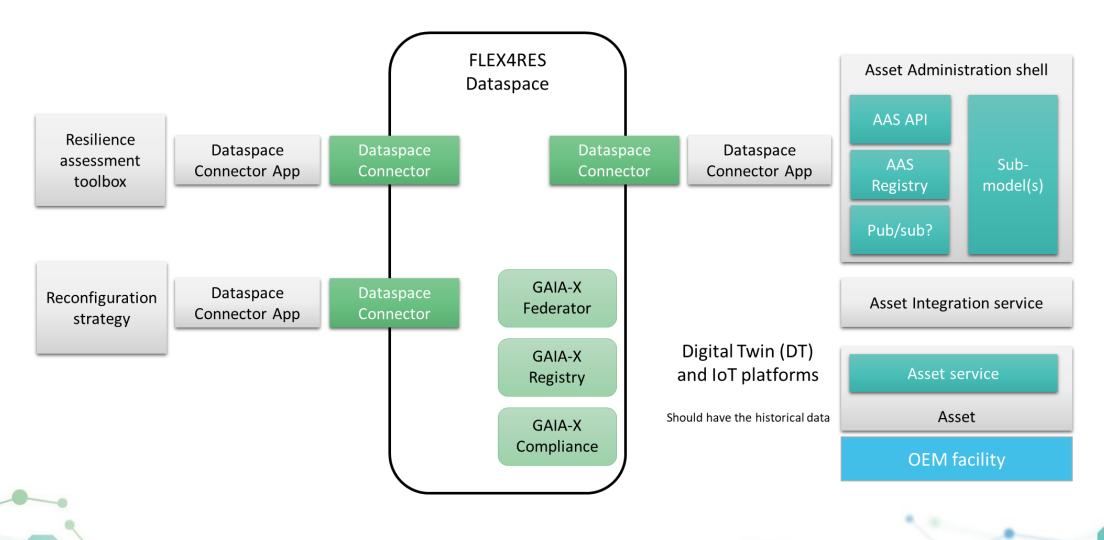
Co-funded by the European Union

Objectives

To more resilient supply chains



14/05/2024


European Union

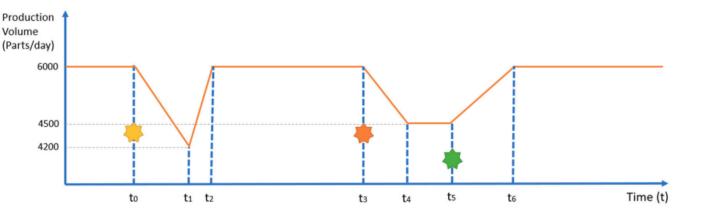
Flex4Res concept

Flex4Res architecture

Resilience assessment toolbox

Problem description:

- The need for resilience assessment tools in manufacturing arises from the increasing complexity of global supply chains, the unpredictable nature of disruptions, and the imperative for businesses to proactively mitigate risks and ensure continuity in operations.
- Assess resilience capability of production systems at three levels
 - <u>Macro</u>: Whole value and supply chain network
 - <u>Meso</u>: Production Line & Production Systems
 company-wide
 - <u>Micro</u>: Machinery & Device Level Local / Onsite


No.	Resilience assessment solution	Leader	Use case
1	Resilience Data Model	PTW	ALL
2	Resilience assessment – supply chain	LMS	SID
3	Resilience assessment – supply chain plan	LMS	SID
4	Resilience assessment – factory	LMS	SID
5	Resilience assessment – shopfloor	IFT	VOE
6	Resilience assessment – shopfloor	PTW	Pre- pilot
7	Resilience assessment – resource	USI	HANS
8	Resilience assessment – resource-to-shop- floor	IDE, SAV	GOI

European Union

Resilience assessment – supply chain

- Provider: LMS
- Use case: SIDENOR
- **Objective:** Compute a resilient supply plan. If plan is not resilient trigger the macroplanning tool to recompute a plan.

- Methodology: Penalty of Change (POC)
 - POC method

Scenarios: change in <u>raw material price</u> in supply plan. Adjust the product prices and demands based on the scrap price.

Penalty: difference in profit between initial supply plan and what-if scenarios plans

Probability: extracted from use case historical data

Alexopoulos, K., Anagiannis, I., Nikolakis, N., & Chryssolouris, G. (2022). A quantitative approach to resilience in manufacturing systems. International Journal of Production Research, 60(24), 7178-7193.

Reconfiguration strategies toolbox

Problem description:

- Reconfiguration strategies are vital in manufacturing to swiftly adapt to changing market demands, technological advancements, and unforeseen disruptions, ensuring optimized production processes, minimized downtime, and sustained competitiveness.
- Reconfiguration strategies tools at three levels:
 - o <u>Macro</u>: Whole value and supply chain
 - <u>Meso</u>: Production Line & Production Systems
 - <u>Micro</u>: Machinery & Device Level

No.	Reconfiguration strategies solutions	Level	Leader	Use case
1	Macroplanning tool	Macro	LMS	SID
2	Macro-Meso transition tool	Macro – Meso	LMS	SID
3	Production Scheduling Tool	Meso	LMS	SID
4	Shopfloor Reconfiguration Tool	Meso	IFT	VOE
5	Human Centric Shopfloor Reconfiguration Tool	Meso	SAV	GOI
6	Fault detection and Human Assistance System	Micro	USI	HANS

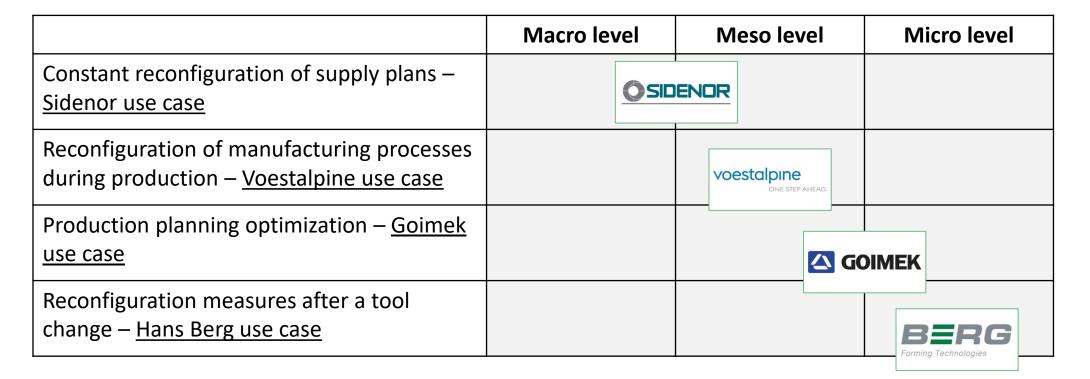
European Union

AAS & Data Spaces

AAS models:

- Industrial Digital Twin Association (IDTA)
- Develop new models

3) GET /shell/Facility {ID}/aas/submodels/Identification/submodel/submodelElements/ID/value IDS Broker AAS 1) Find the endpoint of the connectorfor the appropriate AAS API SM <T> "Ide middleware Data Space ↔ Data Space Data Space Data Space Prop "LocationID Flex4Res services \leftrightarrow <T> "War connector App Connector Connector connector App 2) GET /shell/Facility {ID}/aas/submodels/Identification/submodel/submodelElements/ID/value


* According to International Data Space communcation protocol

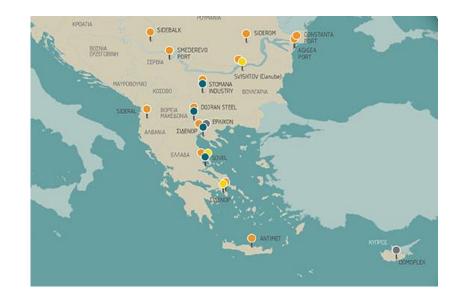
14/05/2024 9

Four industry use cases

Sidenor use case

Constant reconfiguration of supply plans

Challenge: Disruptions require reallocating the production, which takes place manually. Decisions taken at network level aren't connected to the reconfiguration needed at the factory level.


Goal: Reducing the time required for reconfiguration of the production plans for the production network by supporting the user throughout the reconfiguration planning.

Dataspace: Industrial data space (IDS) AAS platform: DIMOFAC AAS middleware **Resilience assessment toolbox:**

- Resilience assessment supply chain,
- Resilience assessment supply chain plan,
- Resilience assessment factory

Reconfiguration strategies toolbox:

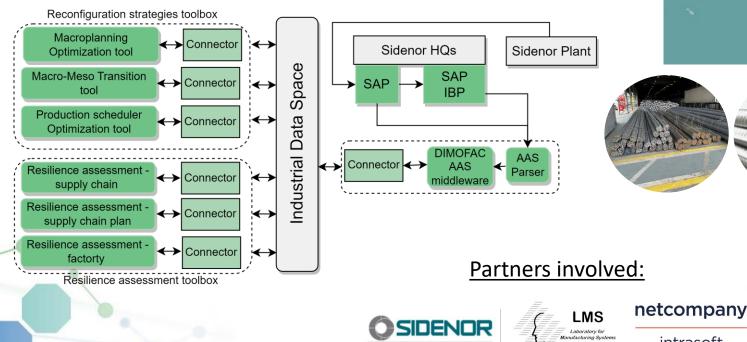
- Macroplanning tool,
- Macro-Meso transition tool,
- Production Scheduling Tool.

Partners involved:

netcompany

intrasoft

11


Flex4Res

Sidenor use case

Constant reconfiguration of supply plans

Challenge: Disruptions require reallocating the production, which takes place manually. Decisions taken at network level aren't connected to the reconfiguration needed at the factory level.

Goal: Reducing the time required for reconfiguration of the production plans for the production network by supporting the user throughout the reconfiguration planning.

intrasoft

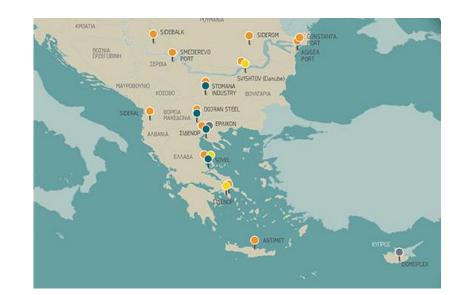
14/05/2024

12

Co-funded by the

European Union

Sidenor use case

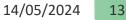

Constant reconfiguration of supply plans

Challenge: Disruptions require reallocating the production, which takes place manually. Decisions taken at network level aren't connected to the reconfiguration needed at the factory level.

Goal: Reducing the time required for reconfiguration of the production plans for the production network by supporting the user throughout the reconfiguration planning.

Expected benefits:

- Improve overall profit of the network 1.
- Improve utilization of production resources 2.
- **Reduce inventory costs** 3.



Partners involved:

intrasoft

Hans Berg use case

Reconfiguration measures after a tool change

Challenge: Adjustment measures are necessary when a tool or material has changed, but its duration and success depend on the experience of the employee executing it.

Goal: Reducing the time required to reconfigure the tools, the amount of produced defective components, and the need for the experience required to perform the adjustment tasks.

Dataspace: Gaia-X

AAS platform: DIMOFAC AAS middleware

Resilience assessment toolbox:

- Resilience assessment resource
- **Reconfiguration strategies toolbox:**
- Fault detection and Human Assistance System

Flex 4Res

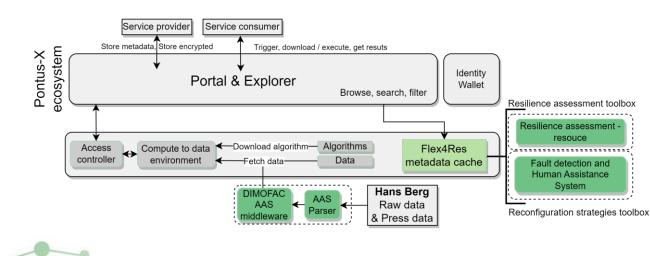
Tubular components

Heating components

Deep drawn components

Partners involved:

14


14/05/2024

Hans Berg use case

Reconfiguration measures after a tool change

Challenge: Adjustment measures are necessary when a tool or material has changed, but its duration and success depend on the experience of the employee executing it.

Goal: Reducing the time required to reconfigure the tools, the amount of produced defective components, and the need for the experience required to perform the adjustment tasks.

Flex 4 Res

Tubular components

Partners involved:

rsität BER

14/05/2024

Hans Berg use case

Reconfiguration measures after a tool change

Challenge: Adjustment measures are necessary when a tool or material has changed, but its duration and success depend on the experience of the employee executing it.

Goal: Reducing the time required to reconfigure the tools, the amount of produced defective components, and the need for the experience required to perform the adjustment tasks.

Expected benefits:

1. Reduce reconfiguration time needed to change tools for new production batches

Tubular components

Heating components

Deep drawn components

Partners involved:

14/05/2024

Voestalpine use case

Reconfiguration of manufacturing processes during production

Challenge: The products vary in size and shape and can only be machined on machinery providing the necessary capabilities, which also vary on other factors such as tools.

Goal: Highly flexible production planning and scheduling, also depending on the current machine state and manufacturing utilities with the opportunity to reconfigure the processes during production.

Dataspace: Gaia-X

AAS platform: CONTACT IoT platform

Resilience assessment toolbox:

Resilience assessment – shopfloor

Reconfiguration strategies toolbox:

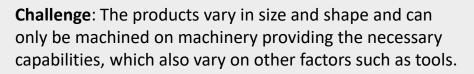
Shopfloor Reconfiguration Tool

Voestalpine Group

Partners involved:

voestalpine

14/05/2024


17

European Union

Voestalpine use case

Reconfiguration of manufacturing processes during production

Goal: Highly flexible production planning and scheduling, also depending on the current machine state and manufacturing utilities with the opportunity to reconfigure the processes during production.

Expected benefits:

- 1. Reduce reconfiguration time
- 2. Reduce reconfiguration cost
- 3. Rescue lead time

Voestalpine Group

Partners involved:

voestalpine

14/05/2024

18

European Union

Goimek use case

Production planning optimisation

Challenge: The process steps within the production of one part are performed in several working centres. They need to be fixed according to the daily production needs.

Goal: Increasing the efficiency and competitiveness as well as the predictability of production by developing a crosssite production planner, which can be constantly reconfigured.

Dataspace: Gaia-X

AAS platform: SAVVY IoT platform

Resilience assessment toolbox:

- Resilience assessment resource-to-shop-floor
- **Reconfiguration strategies toolbox:**
- Human Centric Shopfloor Reconfiguration Tool

Partners involved:

Goimek use case

Production planning optimisation

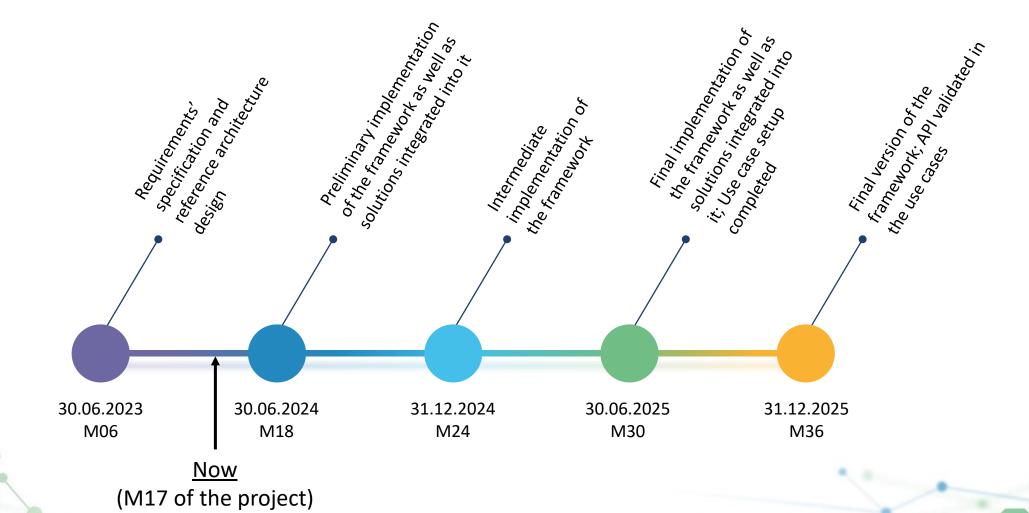
Challenge: The process steps within the production of one part are performed in several working centres. They need to be fixed according to the daily production needs.

Goal: Increasing the efficiency and competitiveness as well as the predictability of production by developing a crosssite production planner, which can be constantly reconfigured.

Expected benefits:

- 1. Reduce reconfiguration time
- 2. Reduce reconfiguration costs
- 3. Increase throughput
- 4. Increase efficiency through automated data exchange

Partners involved:



Milestones

Our way to more supply chain resilience

14/05/2024

European Union

Thank you.

Visit our website: www.flex4res.eu

Follow us on social media:

in <u>Flex4Res-project</u>

J Flex4Res

