

s-X-AIPI Project self-X AI for humans in the factories of the future

Co-funded by the European Union

Grant Number 101058715

Partners

The Consortium is composed by 14 partners across 6 European countries including SMEs, large industries, leading research institutions and standardization bodies.

These applications will not only ministry property that will research, develop, test, and investigation on the ball of the best will the search of the process industries. best will the process industries. improving capabilities.

The s-X-AIPI toolset of AI technologies aims to offer more simplified interfaces that:

Will het site digesa sig flight filted markfenae.ce.

Both existing process industries and their workforce will be equipped with

Operational agility

Performance Optimisation

Cutting-edge Al-based tools

Cutting edge Technology

An innovative Al data pipeline

with autonomic computing capabilities (self-X AI and autonomic manager)

Al applications continually updated (self-improving abilities) by integrating data with reduced human intervention.

Autonomic Manager supporting human in the loop roles.

Cutting-edge technology

Self-X AI represents the fusion of AI as the intelligent processing system and an Autonomic Manager (proposed by IBM), based on the MAPE-K model.

This model encompasses a continuous cycle of Monitoring, Analysing, Planning, and Execution flow based on the Knowledge of the Al system under control.

Outcomes: AI data pipeline and AM

S -

CARTIF

Outcomes: Autonomic Manager (AM)

S

IPI <u>https://github.com/Engineering-Research-and-Development/s-X-AIPI-Autonomic-Manager</u>

CARTIF

AM MAPE-K Flow in Pharma (demo)

Outcomes: HITL involvement scenarios

Activities & Progress

MS1 - Definitions of the requirements of basic methodology and architecture for self-X AI solutions

- Agreement on the definition and implementation of the AI-data pipeline blocks
- Stakeholders
- self-X abilities and capabilities
- Architecture
- Integration

Activities & Progress

MS3 - Initial version of the self-X Al solutions involving human collaboration and validation of the autonomic and self-X technology for individual Al modules in laboratory industrial relevant environment

- Initial AI procedures
 - Model Training
- Data analytics (ingestion, transformation and exploration) in all use cases
- Metadata for self-X abilities
- Perceptors
- AI Methods for metadata
- Initial infrastructure (AM)

Next Steps

MS4 -Technology validation of project's Self-X AI data pipeline into industrial use cases

- Testing of self-X abilities of pipeline components
- Validation for Data in Motion and human support

CARTIF

Next Steps

Steel use-case

Focuses on optimising the use of scrap to produce **high-quality steel products**, while avoiding downstream surface quality problems and reducing process energy intensity.

Scrap mix optimization

- Optimal charge material mix
- Product quality
- Costs
- Enhance the resilience and quality of raw steel production through Electric Arc Furnace (EAF) operations by detecting early deviations in steel composition and temperature between measured and predicted values.

Optimal scrap mix											
Show 10 🖌 entries	Search:										
Scrap type 🙏	Scrap weight [t]		÷								
Scrap	60.00										
Scrap	5.30										
Scrap_5	36.42										
0	10.00										

Scrap Scrap_5 Scrap_9 Scrap

Scrap Distribution

Predicted composition

Element	÷	Predicted element concentration [%]	÷	Maximum elemen concentration [%
AI		0.437		1.000
As		0.005		1.000
В		0.000		1.000
Bi		0.000		1.000
С		0.060		0.350
Ca		0.003		1.000
Cr		0.041		0.100
Cu		0.207		0.300
Mn		0.071		1.080
Mo		0.017		1.000
Showing 1 to	10 of 25 ent	ries Pr	revious	1 2 3

Asphalt use-case

Focuses on the AI use for the circularity of the **esphalt value chain**, the quality control of feedstock and of the final product and the overall sustainable performance of the process.

🔒 НОМЕ

X

🖽 GENERAL

s-X-AIPI

- () MIXING TIME
- 📩 MIX PRODUCTION
- LABORATORY
- 🎎 COOL AGGREGATES
- X MIX COMPOSITION

Asphalt Mix Anomalies: unsupervised detection &

labelling

🔀 s-X-AIPI 2 номе 🖽 GENERAL I MIXING TIME 🔬 MIX PRODUCTION LABORATORY COOL AGGREGATES 💥 MIX COMPOSITION

				LEGEND: Anomaly labeled	as NO anomaly Anomaly labeled as N
ASPHALT MIX GENERAL DETAILS					
Show 10 v entries					Search:
Initial Date	Final Date	Asphalt Mix Desing	\$	Setpoint weight of the mix real(Kg) ≬	Weight of the mix rea
2024-03-07 07:45:26	2024-03-07 07:49:44	AD12CR R20		22284	
Showing 1 to 1 of 1 entries					Previous 1
MIXING TIMES (SECONDS)> ANC	MALIES				Search:
MIXING TIMES (SECONDS)> ANC	MALIES	Setpoint 🔷	Real 🌢		Search: Difference (Setpoint
MIXING TIMES (SECONDS)> AND Show 10 -> entries	MALIES	Setpoint ≬ 13	Real I		Search: Difference (Setpoint
MIXING TIMES (SECONDS)> ANC	MALIES	Setpoint ♦ 13 28	Real 🔷 13 25		Search: Difference (Setpoint
MIXING TIMES (SECONDS)> AND Show 10> entries Dry Wet Total	MALIES	Setpoint ♦ 13 28 41	Real		Search: Difference (Setpoint
MIXING TIMES (SECONDS)> ANC Show 10 v entries Dry Wet Total Showing 1 to 3 of 3 entries	MALIES	Setpoint ♦ 13 28 41	Real ♦ 13 25 38		Search: Difference (Setpoint
MIXING TIMES (SECONDS)> AND Show 10 v entries Dry Wet Total Showing 1 to 3 of 3 entries ts this anomaly correct (Y/N)?	MALIES	Setpoint ♦ 13 28 41	Real ♦ 13 25 38		Search: Difference (Setpoint

Pharmaceutical use-case

Focuses on predicting the optimal settings for the manufacturing process of **chemicals and active pharmaceutical ingredients** when dealing with solid or liquid suspensions.

It will employ Machine Learning (ML) based control strategies while keeping human experts involved in the decisionmaking loop.

Pharma Use Case

- Electrochemical process
- Three in-line data sources:
 - OCT, IR, power supply
- User-interface for process operator and data scientist
- Human-in-the-loop for critical decisions
- Autonomic manager acts are remote Al component

User Interface

Anode Cathode

Online FT-IR

Human-inthe-loop

Pharma Use Case: Current status

Aluminium use-case

Focuses on optimizing **recycling processes** from scrap, reducing the melting power on time, optimizing metal yield, and improving liquid aluminium quality leading to a decreased rate of downstream quality rejections.

Aluminium use case

- Al solution
- Estimate the final chemical composition of aluminium mixtures
- All scraps undergo an initial sampling to evaluate their chemical composition

Aluminium use case

Aluminium AI Data Pipeline

a men

Chemical Analysis Predictor

1	7308	AL 95%	CA	CR.	<20	<10	< 0.5	< 0.5			<15	5110	< 0.5	2.IN	94.0 <	Zn + Ph + Sn <1
1	1500	H 3370			\$2.0	\$ 1.0	10.0	\$0.5	-	-	\$ 1.5	~	40.0		54.0 4	201710730151
Find Material	1058 BEBEDERO:	✓ Add Material														
Code: 1002	Name:		Quantity(kg	g): 100	Yi	eld: 61.6 %	Price	e: 0.036	€/kg	Cor	nposition	: Al: 87	18% Ca:	0% Cr.	0% Cu: 1	.39% Fe: 0.76% Mg:
4	n na serie a s															
Code: 1058	Name:		Quantity	(kg): 150		Yield: 94.68	% P	Price: 1.1	21 €/kg	1	Composi	tion: Al	95.648%	Ca: 0%	Cr: 0% 0	Cu: 0.132% Fe: 0.16%
					_		_									
																Construction of the second
Process						()	2									Res
Process						<u>(</u>)	2									Res
Process						á 9										Res
Process		\sim						C		(7	(7			Res
Process		89.394% 0.20	01% 7	7.167%	0.012	6 9 % 0.	235%	0.026	6%	0.0	003%	0.0	52%			Res
Process		89.394% 0.20	11% 7	7.167%	0.012	6 9 % 0.	235%	0.020	6%	0.0	003%	0.0	52%			Res
Process		89.394% 0.20)196 7 a	7.167%	0.012	6 0.	235%	0.020	6%	0.0	003%	0.0	52%			Res
Process		89.394% 0.20	01% 7	7.167%	0.012'	6 0. % 0.	235%	0.024	6%	0.0	003%	0.0	52%			Re
Process		89.394% 0.20 A)1% 7 6	7.167%	0.0124	6 0. 36 0.	235% Mn	0.024	6%	0.0	003%	0.0	52%			Re

AIPI

S 🔀

-

© 2023 AIMEN Technology Centre

Aluminium use case

Aluminium AI Data Pipeline

a men

IORM_CODE	PRODUCT_CODE	ALLOY_NAME	CA	CR	CU	FE	MG	MN	NI		PB	SI	SN	П	ZN	ALA	COMMENTS
1	7527	AI 90%	2	4	< 1.5	-	-	< 1.0	< 0.4	-	< 0.4	< 4.0	-	< 0.4	< 3.0	89.3 <	Ni+Ti+Pb < 1.0
oduct amount (Kg)	150			Pr	ocess												
Recipe 1																	*****
Code: 1093	Name:						c	uantity:	136. <mark>1 k</mark> g.			F	P <mark>rice:</mark> 0.	2 €/kg.		Sc +	raps * * * *
Code: 1305	Name:				Quantity: 49.9 kg.						Price: . €/kg.				Chemistry		
Code: 1321	Name:							Quantity	: 41.6 kg				Price: /	ß €/kg.		*	* * * *
Code: 3001		Name:						Quantity	: 22 9 kg				Price: /	€/kα ▶		Pr +	ice • • • •
′recio: 27.2 ≜€	AI: 91.9 %	Fe: 0.7 %	,	s	i: 2.2 %		м	g:0%		Mn	0.3 %		Cu:	2.8 %		Ni: 0 %	Ti: 0 %
Recipe 2																	****
Precio: 16.1€	AI: 91.8 %	Fe: 1.2 %		s	i: 2.5 %		M	g:0%		Mn	0.2 %		Cu:	1.3 %		Ni: 0 %	Ti: 0 %
Recipe 3																	* * * * *

:

© 2023 AIMEN Technology Centre

But there Is more

Expected Impact

Position European industry as a leader in the digital transition Improve the environmental sustainability of industrial production

Expected Impact

Enable circular manufacturing and re-manufacturing systems

Empower and improve the human position in the industrial production

Join us

WEBSITE

www.s-x-aipi-project.eu

s-X-AIPI@cartif.es

LINKEDIN in

EMAIL

 \mathbb{X} **TWITTER** s-X-AIPI

@S-X-AIPIPROJECT

Thank you!

