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Abstract

In this document, we propose asix-dimensional taxonomy for big data. The main objective of this taxonomyisto help
decision makers navigate the myriad choices in compute and storage infrastructures as well as data analytics techniques,
and security and privacy frameworks. The taxonomy has been pivoted around the nature of the datato be analyzed.
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Introduction

The term big data refers to the massive amount of digital information companies and governments collect about us and
our surroundings. This datais not only generated by traditional information exchange and software use via desktop
computers, mobile phones and so on, but also from the myriads of sensors of various types embedded in various
environments, whetherin city streets (cameras, microphones)orjet engines (temperature sensors), and the soon-to-
proliferate Internet of Things, where virtually every electrical device will connecttothe Internetand produce data.

Every day, we create 2.5 quintillion bytes of data--so much that 90% of the data in the world today has been createdin
the last twoyearsalone (as of 2011 [1]). The issues of storing, computing, security and privacy, and analytics are all
magnified by the velocity, volume, and variety of big data, such as large-scale cloud infrastructures, diversity of data
sources and formats, streaming nature of data acquisition and high volume inter-cloud migration.

The six-dimensional taxonomy is shown in Figure 1. These six dimensions arise from the key aspects thatare needed to
establish abigdata infrastructure. We will describe each of the dimensionsin the rest of the document.

Security & Compute
Privacy Infrastructure

Visualization Storage
Infrastructure

Analytics

Figure 1: Big data 6-D taxonomy
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Data

The first question: What are the various domainsin which big dataarise? The reason for categorizingthe domainsin
which data arise isin order to understand the infrastructural choices and requirements that need to be made for
particulartypes of data. All “data” is not equivalent. The particulardomainin which data arises will determine the types
of architecture that will be required to store it, process it, and perform analytics onit. There are several waysin which
we can think about this question of datadomains.

Latency Requirements
The first way to characterize datawould be according to time spanin which it needsto be analyzed:

e Real-time (financialstreams, complex event processing (CEP), intrusion detection, fraud detection)
e Nearreal-time (ad placement)
e Batch (retail, forensics, bioinformatics, geodata, historical data of various types)

Examples of “Real-Time” Applications
Some of the many applications thatinvolve dataarriving “in real-time” include the following:

e On-line ad optimization (including real-timebidding)

e Highfrequencyonlinetrading platforms

e Security eventmonitoring

e Financial transaction monitoring and fraud detection

e Webanalytics and other kinds of dashboards

e Churnpredictionforonline games ore-commerce

e Optimizingdevices, industrial plants orlogistics systems based on behaviorand usage
e Control systems related tasks; e.g., the SmartGrid, nuclear plants

e Sentimentanalysis of tweets pertaining to atopic

In most of these applications, datais constantly changing. To react to certain events, itis necessary and/or practical to
consideronly relevant dataovera certain time frame (“page views inthe last hour” or “transactionsinthe last
hour/day/week/month...”), instead of taking the entirety of past data into account.

Key Attributes of Real-Time Applications Impacting Big Data Technology Solutions

In orderto selectthe appropriate approach and big data technology solution thatis bestsuited toa problem at hand, it
isimportantto understand some of the key attributes thatimpact this decision. In addition tolatency requirements (the
time available to compute the results), these could include the following:

e EventCharacteristics
o Includinginput/output datarate required by the application.
e EventResponse Complexity
o Processingcomplexity:
*  Whatisthe computational complexity of the processing task foreach event?
o Data Domain Complexity:
=  Whatisthe size of the data that has to be accessed to support such processing?

© 2014 Cloud Security Alliance - All Rights Reserved. 6
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= Doesitfitinmemory, orisit scattered over multiple locations and storage media?

As mightbe expected, eventresponse complexity thatis highin both the compute and data domain aspects, when
coupled with highinput/output datarates and low latency requirements poses the most severe challenges on the
underlyinginfrastructure.

Latencyis the time available between whenaninputeventoccursand the response tothat eventis needed. Stated
differently, itis the time thatit takesto perform the computation thatleadstoa decision.

There are two broad categories that we consider here:low and high latency requirements.

® We will here define “low latency” applications to be those thatrequire a response time onthe orderof a few
tens of milliseconds. Forapplications like high frequency trading and real-time bidding or on-line ad
optimization, thereisan upperlimitonthe latency thatis acceptable in the context of the application. Often,
thisison the order of 20-50 milliseconds for on-linead optimization systems, with high frequency trading
systems being potentially even more stringent in terms of real-timeresponse required. While the specific
latencies are afunction of the application and infrastructure, and will evolve over time, applications that we
include inthis category are those requiring a “real-time” response.

o We define “mediumto high latency” applications to be those that need aresponse time onthe orderof a few
seconds to minutes, to potentially afew hours. Forexample, in the context of applications thatinvolve user
interaction and dashboards, itis normally acceptable if the results are updated every fewseconds oreven every
few minutes. Most forms of reporting and longer duration data analysis can tolerate latencies on the order of
several minutes, and sometimes even hours or days.

The real question here iswhetherthe application can (or has to) react in real-time. If data comesin at 100k events per
second, but the main business actionis taken by a manager who manually examines the aggregate dataonce every few
daysto adjust some business strategy, then low latency is nota key businessissue. On the otherhand, if a process
control systemis beingdriven by datafrom a set of sensors, oran enterprise isdeployinganew landing page fora
website andthe objectiveisto detectany sudden dropinthe number of visitors, amore immediateresponse is needed.

As shownin Figure 2 below, the overall latency of acomputation ata high level is comprised of communication network
latency, computation latency, and database latency. The precise budget for each of the three broad categories (network,

compute, and database) depends highly on the application. Compute-intensive applications will leave less room for
network and database operations.

OVERALL LATENCY

Network budget Compute budget Database budget

Latency > 200ms

BATCH REAL-TIME

Figure 2: Characterization of latency requirements
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Big Data Technology Solutions for Real-Time Applications

When considering an appropriate big datatechnology platform, one of the main considerationsis the latency
requirement. If low latency is not required, more traditionalapproaches that first collect dataon disk or in memory and
then perform computations on this datalater will suffice. In contrast, low latency requirements generally imply that the
data mustbe processedasitcomesin.

Structure
Anotherway to map various domains forbigdatais inthe degree of structure or organization they come with.

e Structured (retail, financial, bioinformatics, geodata)
e Semi-structured (web logs, email, documents)
e Unstructured (images, video, sensor data, web pages)

Itisuseful tothink of data as being structured, unstructured or semi-structured. We provide some examples below, with
the caveat that a formal definition that precisely delineates these categories may be elusive.

Structured Data

Structured data is exemplified by data contained in relational databases and spreadsheets. Structured data conforms to
a database model, whichislargely characterized by the various fields that data belongs to (name, address, age and so
forth), and the data type for each field (numeric, currency, alphabetic, name, date, address). The model alsohasa
notion of restrictions or constraints on each field (forexample, integersin a certain range), and constraints between
elementsinthe variousfields that are used to enforce anotion of consistency (no duplicates, cannot be scheduledin
two different places atthe same time, etc.)

Unstructured Data

Unstructured Data (or unstructured information) refers toinformation that either does not have a pre-defined data
model oris notorganizedina predefined manner. Unstructured information is typically text-heavy, but may also contain
data such as dates, numbers, and facts. Otherexamplesincludethe “raw” (untagged) data representing photos and
graphicimages, videos, streaming sensor data, web pages, PDF files, PowerPoint presentations, emails, blog entries,
wikis, and word processing documents.

Semi-Structured Data

Semi-structured dataliesin between structured and unstructured data. Itis a type of structured data, butlacks a strict
structure imposed by an underlying data model. With semi-structured data, tags or othertypes of markers are used to
identify certain elements within the data, but the data doesn’t have a rigid structure from which complete semantic
meaningcan be easily extracted without much further processing. Forexample, word processing software now can
include metadatashowingthe author's name and the date created, while the bulk of the document contains
unstructured text. (Sophisticated learning algorithms would have to mine the text to understand what the text was
about, because no model exists that classifies the textinto neat categories). Asan additional nuance, the textin the
document may be furthertagged as including table of contents, chapters, and sections. Emails have the sender,
recipient, date, time and otherfixed fields added to the unstructured data of the email message contentand any
attachments. Photos orother graphics can be tagged with keywords such asthe creator, date, location and other

© 2014 Cloud Security Alliance - All Rights Reserved. 8
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content-specifickeywords (such as names of people in the photos), makingit possible to organize and locate graphics.
XML and other markup languages are often used to manage semi-structured data.

Yet anotherway to characterize the domainsistolookat the types of industries thatgenerate and need to extract
information fromthe data

e Financial services

e Retail

o Networksecurity

e large-scalescience

e Social networking

e Internetof Things/sensornetworks
e Visual media

Figure 3illustrates the various domains and specificsubdomains in which big data processingissues arise.

Intrustion

Network detection

security

APTs

Sentiment

Social .
analysis

networking

Social graphs

Visual media

Sensor data
Data domains

Retail

Scene analysis

Image/audio
understanding

Weather

Anomaly
detection

Behavioral
analysis

High frequency

Finance X
trading

Bioinformatics

Large scale
science

High energy
physics

Figure 3: Data domains

Figure 4 illustrates how the big dataverticals map to the time and organization axes. A case can be made thatin factall
of the industriesincluded here have use cases that encounterdataatall levels of organization,and have processing
needsthatspanall response times. In that case, the industry domainis another orthogonal axis for characterizing the
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domain space of big data. We would then visualize these domains by particular common use cases, and mapthemto
industry, time, and structure.
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Figure 4: Mapping the big data verticals

Compute Infrastructure

While the Hadoop ecosystem s a popularchoice for processing large datasetsin parallel usingcommodity computing
resources, there are several other compute infrastructures to use in various domains. Figure 5shows the taxonomy for
the various styles of processing architectures. Computing paradigms on big data currently differ at the first level of
abstraction on whetherthe processing willbe done in batch mode, orin real-time/near real-time on streaming data
(datathat is constantly comingin and needsto be processed rightaway). In this section, we highlight two specific
infrastructures: Hadoop for batch processing, and Spark for real-time processing.

MapReduce isa programming model and an associated implementation for processing and generating large datasets.
Users specify amap function that processes akey/value pairto generate aset of intermediate key/value pairs,and a
reduce functionthat merges all intermediate values associated with the same intermediate key. Many real world tasks
are expressible in this model, as shown inthe paperreferencedin[2].

Programs writtenin this functional style are automatically parallelized and executed on a large cluster of commodity
machines. The run-time system takes care of the details of partitioning the input data, schedulingthe program's

© 2014 Cloud Security Alliance - All Rights Reserved. 10
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execution across aset of machines, handling machine failures, and managing the required inter-machine
communication. This allows programmers without any experience with paralleland distributed systems to utilize the
resources of a large distributed system easily.

Bulk synchronous parallel processing [3] isa model proposed originally by Leslie Valiant. In this model, processors
execute independently on local datafor a number of steps. They can also communicate with other processors while
computing. Butthey all stop to synchronize at known pointsin the execution; these points are called barrier
synchronization points. This method ensures that deadlock or livelock problems can be detected easily.

Hadoop

MapReduce

N

Bulk
synchronous Giraph
parallel
Compute
infrastructure Pregel
Infosphere

Spark

Figure 5: Compute infrastructure

Low Latency: Stream Processing

If an application demands “immediate” response to each eventasit occurs, some form of stream processingis needed,
which essentially processes the dataas itcomesin. The general approachisto have a little bit of code that processes
each of the events separately. Inorderto speed up the processing, the stream may be subdivided, and the computation
distributed across clusters.

Apache Stormis a popularframework forevent processing that was developed at Twitter and promulgated by Twitter
and othercompaniesthatrequired this paradigm of real-time processing. Other examples are Amazon’s Kinesis, or the
streaming capabilities of MapR. These frameworks take care of the scaling onto multiple cluster nodes and come with
varying degrees of support forresilience and faulttolerance, for example, through checkpointing, to make sure the
system can recoverfrom failure.

© 2014 Cloud Security Alliance - All Rights Reserved. 11



BIG DATA WORKING GROUP Big Data Taxonomy, September 2014

These stream processing frameworks primarily address only parallelization of the computational load; an additional
storage layeris needed to store the resultsin orderto be able to query them. While the “current state” of the
computationis containedin the stream processing framework, thereis usually no clean way to access or query this
information, particularly from external modules. Depending on the amount of data thatis being processed, this might
furtherentail the needforalarge, high-performance storage backend.

Apache Spark (discussed in more detail below), simplistically speaking, takes a hybrid approach. Events are collectedina
bufferandthen processed atfixed intervals (say every few seconds) in a batch fashion. Since Spark holds the datain
memory, it can in principle process the batches fast enough to keep up with the incoming data stream.

In summary, low latency processing generally entails some form of stream processing, with associated infrastructure for
computation and storage. It isimportant to note that if the application requirements are extreme (forexample, if sub-
millisecond latencies are needed), then traditional software stacks may not be good enough forthe task. Specialized
software stacks or components may be have to be custom built for the application.

High Latency: Batch Processing

If the application context can tolerate high latency (forexample, it does notrequire that the results be generated within
a fewseconds, oreven minutes), a batch-oriented computing approach can be adopted.

In the simplest example, the application can scan through logfiles to do whatis needed. Alternatively, all of the datacan
be put into a database after which the application queries this datato compute desired results. Databases used herecan
be classical SQL databases, or pure storage databases such as Cassandra, or databases that can also run aggregation
jobs, such as CouchDB.

Batch processing can be scaled effectively using frameworks such as Apache Hadoop (discussed in more detail below),
provided thatthe underlying processing can be cast into a map-reduce paradigm. Log datacan be storedina distributed
fashion onthe cluster. The application canthen run queriesin a parallel fashion to reduce response times.

As Hadoop has matured, a number of projects have evolved that build on top of Hadoop. One such example is

Apache Drill, avertical database (or column-oriented database) similarto Google’s Dremel on which BigQuery is based.
Vertical databases are optimized for tasks in which you have to scan whole tables and count entries matching some
criterion. Instead of storing the data by row as in traditional databases, datais stored by column. So instead of storing
dataasina logfile,oneline perentry, one takes each field of the dataand storesittogether, resultingin much better 10
characteristics. HP Verticaand ParStream are othervertical databases.

Some projects and products have started to replace the disk underlying the database by memory (ora combination of
flashand memory) as a storage medium, most notably SAP Hana butalso GridGain and Apache Spark to getaround the
disk speed limitation. These systems are still essentially batch processingin nature, although turnaround times between
gueries can be reduced considerably. Another example of a high performance solution that leverages flash based
memory systemsis Aerospike.

Hadoop 1.0

Hadoop [4] is the open source distributed programming and storage infrastructure that grew out of Google’s seminal
MapReduce [2] and Google file system [5] papers. Itis based on the paradigm of “map reduce” computing, where the
inputto a computational taskis first “mapped” by splittingitacross various worker nodes that work on subsets of the
inputindependently, and a “reduce” step where the answers from all of the map sub-problems are collected and

© 2014 Cloud Security Alliance - All Rights Reserved. 12
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combinedinsome mannertoformthe output of the overall computational task (Figure 6). The data stored can either be
inthe Hadoop filesystem as unstructured data, orin a database as structured data. Because Hadoop is designed to work
on problems whose input datais verylarge and cannotfitin the disk size of a single computer, the MapReduce paradigm
isdesignedtotake computationtowhere the datais stored, ratherthan move data to where the computation occurs.
The frameworkis also designedto be highly fault tolerant viadatareplication, and to have an architecture that keeps
track of the workernodes’ progress via polling, and reassigns tasks to other nodes if some of the nodes should fail.In
addition, the framework will automatically partition the “map” and “reduce” computations across the compute/storage
network. All of thatis done automatically by the Hadoop runtime, and the developer has only to write the map and
reduce routines forthe computational task at hand.

The entire Hadoop ecosystemincludes the following projects:

e Pig—A platformthat provides ahigh-level language for expressing programs that analyze large datasets. Pigis
equipped with acompilerthat translates Pig programsinto sequences of MapReduce jobs that the Hadoop
framework executes.

e Hive — A data-warehousing solution built on top of the Hadoop environment. It brings familiar relational-
database concepts, such as tables, columns, and partitions, and asubset of SQL (HiveQL) to the unstructured
world of Hadoop. Hive queries are compiled into MapReduce jobs executed using Hadoop.

e HBase — A column-oriented NoSQL data-storage environment designed to supportlarge, sparsely populated
tablesinHadoop.

¢ Flume-A distributed, reliable, available service for efficiently moving large amounts of dataas itis produced.
Flume is well-suited to gathering logs from multiple systems and inserting them into the Hadoop Distributed File
System (HDFS) as they are generated.

e Lucene- A search-engine library that provides high-performance and full-featured text search.

e Avro— A data-serialization technology that uses JSON for defining data types and protocols, and serializes data
ina compact binary format.

e ZooKeeper—A centralized service for maintaining configuration information and naming, providing distributed
synchronization and group services.

e Oozie— Aworkflow schedulersystem for managingand orchestrating the execution of Apache Hadoop jobs.

© 2014 Cloud Security Alliance - All Rights Reserved. 13
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Figure 6: Hadoop MapReduce flow [7]

While Hadoopis good for batch processing, itis generallyconsidered unsuitable for data streams thatare non-
terminating. Thisis because aHadoop job assumes thatall of the data existsin files onvarious nodes, and will startits
Map and Reduce phasesona fixed amount of inputto generate afixed amount of output. For streaming applications,
where there is a steady stream of data that never stops, this model is clunky and suboptimal. Adding new map tasks
dynamically to process newly arrived inputs (while potentially removing the processing of old data as any system for

processing streams of data has to work on sliding windows) creates too much overhead and too many performance
penalties.

Hadoopis also not suitable foralgorithms that are iterative and depend on previously computed values. This class of

algorithmsincludes many types of machine learning algorithms that are critical for sophisticated dataanalytics, such as
online learningalgorithms [6].

Hadoopis also unsuitable foralgorithms that depend on ashared global state, since the entire MapReduce model
dependsonindependent map tasks runningin parallel without needing access to a shared state that would entail severe
performance bottlenecks due to locks, semaphores, and network delays. An example of where this occursisin Monte-
Carlosimulations which are used to performinferences in probabilisticmodels [6].

Figure 7 shows how the various elements of the Hadoop ecosystem fit together.
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Hbase Language: Language: Search: File data
Column PIG (Dataflow) Hive(Queries, Lucene

oriented sSQL)
noSQL

e MapReduce (Distributed data processing)

Hardware

Figure 7: Hadoop 1.0 stack

Hadoop 2.0

Because of these issues, anew Hadoop 2.0 has been developed (Figure 8). Crucially, this framework decouples HDFS,
resource management, and MapReduce programming, and introduces aresource management layer called YARN that
takes care of the lowerlevelresources. An applicationin Hadoop 2.0 can now deployits own application-level
schedulingroutines on top of the Hadoop-managed storage and compute resources.

© 2014 Cloud Security Alliance - All Rights Reserved.
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Hbase Language: Language: Search: File data
Column PIG (Dataflow) f§ Hive(Queries, Lucene

oriented sQL)
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JErElbeEs MapReduce (Distributed data processing)

HDFS (DistributedFile system)
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Hardware

Figure 8: Hadoop 2.0 stack with YARN layer for resource management and TEZ for execution

Berkeley Spark [39,40]

Spark isan opensource cluster computing systeminvented at the University of California at Berkeley thatisaimed at
speeding up dataanalytics—bothin runtime and in development. To run programs faster, Spark provides primitives for
in-memory cluster computing: ajob can load data into memory and query it repeatedly much more quickly than with
disk-based systems such as Hadoop MapReduce. Spark s also intended to unify the processing stack, where currently
batch processingis done using MapReduce, interactive queries using HBase, and the processing of streams forreal-time
analytics using other frameworks such Twitter’s Storm. These three stacks are difficult to maintain for consistent
metrics. Also, itis difficultto performinteractive queries on streaming data. The unified Spark stack is designed to
handle these requirements efficiently and scalably.

A key conceptinSpark isthe resilient distributed dataset (RDD), which is a collection of objects spread across a cluster
storedin RAM or disk. Applicationsin Spark can load these RDDs into the memory of a cluster of nodes and let the Spark
runtime automatically handle the partitioning of the dataand its locality during runtime. This enables fast iterative
processing. A stream of incoming datacan be splitupinto a series of batches and processed as a sequence of small-
batch jobs. The Spark architecture allows this seamless combination of streaming and batch processingin one system.

To make programming faster, Spark provides clean, concise APlsin Scala, Java, and Python. Spark can be used
interactively fromthe Scalaand Python shellstorapidly query big data sets. Spark was initially developed fortwo
applications wherekeeping datain memory helps:iterative machinelearning algorithms and interactive datamining. In
both cases, Spark has been shown to run up to 100x fasterthan Hadoop MapReduce.
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Spark is also the engine behind Shark, afully Apache Hive-compatible data warehousing system that can run 100x faster
than Hive. While Sparkisa new engine, it can access any data source supported by Hadoop.

Spark fitsin seamlessly with the Hadoop 2.0ecosystem (Figure 9) as an alternative to MapReduce, while using the same
underlyinginfrastructure such as YARN and the HDFS. The GraphX and MLlib libraries include sophisticated graph and
machine learning algorithms that can be runin real-time. BlinkDB is a massively parallel, approximate query enginefor
runninginteractive SQLqueries that trades off query accuracy forresponse time, with results annotated by meaningful
error bars. BlinkDB has been demonstrated to run 200x fasterthan Hive withinan error of 2-10%.

Hbase PIG Hive Lucene | . File data
Column Shark
oriented (saL)

noSQL
database MapReduce
Spark

Mesos

HDFS (Distributed File system)

Streaming
GraphX

VM

0S

Hypervisor

Hardware

Figure 9: Spark in the Hadoop 2.0 ecosystem

Storage Infrastructure

Large volumes of dataare comingat a much fastervelocity in varieties of formats such as multimediaand textthatdon’t
easilyfitintoacolumn-and-row database structure. Given thesefactors, many solutions have been created that provide
the scale and speed developers need when they build social, analytics, gaming, financial or medical apps with large
datasets [8]. Figure 10 shows the taxonomy for the various types of databases that are used for big data storage.
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Figure 10: Storage infrastructure

In orderto scale databases here to handle the volume, velocity, and variety of data, we need to scale horizontally across
multiple serversratherthan scaling vertically by upgrading asingle server (by adding more RAMor increasing HDD
capacity). Butscaling horizontally implies adistributed architecturein which dataresides in different places. This setup
leads toa unique challenge shared by all distributed computer systems: The CAP Theorem [9]. According to the CAP
theorem, adistributed storage system must choose to sacrifice either consistency (that everyone sees the same data) or
availability (that you can always read/write) while having partition tolerance (where the system continues to operate

despite arbitrary message loss or failure of part of the system). Note that partition tolerance is not an option as
partitionsina distributed system happen when nodes crash (for whatever reason) or the network drops an arbitrary
number of packets (due to switch failures or otherreasons). When the inevitable “partition” happens and a distributed
system has parts that cannot communicate with each other, the questionis whetheradistributed systemis goingto
favor consistency (meaningitwill respond only to queries that satisfy consistency, and not respond when consistency
cannot be guaranteed, meaning thatavailability is sacrificed) or whetheravailability will be favored (meaningall queries
are answered even if some are inconsistent).

A standard metricby which databases are judged s by their ACID properties:

e Atomicity requiresthat eachtransaction be all or nothing. If one part of the transaction fails, the entire
transaction fails and the database state is left unchanged.
e Consistency ensuresthateach transaction will bring the database from one valid state to another.
e Isolationensuresthat concurrent execution of transactions results in a system state that would be obtained if
the transactions were executed serially.
© 2014 Cloud Security Alliance - All Rights Reserved. 18
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o Durability meansthatonce a transactionis committedit will remainso, eveninthe eventof powerloss,
crashes, or errors.

The ACID focus on consistencyis the traditional approach taken by relational databases. In orderto handle the needs of
internetand cloud based models of storage, a design philosophy at the other end of the spectrum was coined by Eric
Brewer[10], and called BASE: Basically Available, Soft state, Eventually consistent. Most NoSQL databases are based on
BASE principles, while choosing Cor Ain the CAP theorem.

The following table summarizes the most common database models, by theirstrengths, and their CAP theorem
compromise of consistency versus availability [8]:

. DATABASE TYPE

Relational

Stores data in
rows/columns.
Parent-child
records can be
joined remotely
on the server.
Provides speed
over scale.
Some capacity
for vertical
scaling, poor
capacity for
horizontal
scaling. This
type of
database is
where most
people start

WHAT THEY DO

Horizontal
scaling is
possible via
replicaton —
sharing data
between
redundant
nodes fo
ensure
consistency -
and some
people have
success
sharding —
horizontally

HORIZONTAL SCALING

Document

Stores data in
documents.
Parent-child
records can be
stored in the
same document
and returned in
a single fetch
operation with
no join. The
serveris aware
of the fields
stored within a
document, can
query on them,
and return their
properties
selectively.

Horizontal
scaling is
provided via
replication, or
replicaion and
sharding.
Document-
oriented
databases also
usually support
relatively low-

performance Ma
pReduce for ad-

hoc querying.

Key-value

Stores an
arbitrary value at
a key. Most can
perform simple
operations on a
single value.
Typically, each
property of a
record must be
fetched in
multiple trips,
with Redis being
an excepton.
Very simple and
very fast

Horizontal scale
is provided via
sharding.
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Big Table-
Inspired

Data putinto
column-oriented
stores inspired by
Google’s BigTabl
e paper [11]. It
has tunable CAP
parameters, and
can be adjusted
to prefer either
consistency or
availability. Both
of hese
adjustments are
operationally
intensive.

Good speed and
very wide
horizontal scale
capabiliies.

Dynamo-
Inspired

Distributed
key/value stores
inspired by
Amazon’s Dyna
mo paper [12]. A
key written o a
dynamo ring is
persisted in
several nodes at
once before a
successful write
is reported. Riak
also provides a
native
MapReduce
implementaton.

Usually provide
the best scale
and extremely
strong dafa
durability.

Graph

Uses graph
structures with
nodes, edges,
and properties fo
represent and
store data.
Provides index-
free adjacency;
This means that
every element
contains a
direct pointer to
its adjacent
element and no
index lookups are
necessary.
General graph
databases that
can store any
graph are distinct
from specialized
graph databases
such

as friplestores an
d network
databases [13].
Poor horizontal
scaling so far,
except for Titan.

NewSQL

Like relational,
except these
databases offer
high
performance
and scalability
while preserving
traditonal ACID
notions. They
are capable of
high throughput
online
transaction
processing
requirements,
while preserving
the high-level
language query
capabiliies of
SQL [14].

Provided
through
sharding.
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WHEN TO USE CAP
BALANCE

EXAMPLE
PRODUCT

partiioning
data - but
those
techniques add
complexity.
Prefer
consistency
over
availability.

When you have
highly
structured data,
and you know
what you'll be
storing. Great
when
production
queries will be
predictable.

Oracle, SQLite,

Generally prefer
consistency
over availability.

When your
concept of a
“record” has
relatively
bounded
growth, and can
store all of ifs
related
properties in a
single doc.

MongoDB, Cou

Generally prefer
consistency over
availability.

Very simple
schemas,
caching of
upstream query
results, or
extreme speed
scenarios (like
real-ime
counters).
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Prefer
consistency over
availability

When you need
consistency and
write performance
that scales past
the capabilies of
a single machine.
Hbase in
particular has
been used with
approximately (or
about) 1,000
nodes in
production.

Hbase, Cassandr

Prefer
availability over
consistency.

When the
system must
always be
available for
writes and
effectively
cannot lose
data.

PostgreSQL, M

chDB, BigCouc

ySQL, VoltDB

h, Cloudant

CouchBase, Re

Cassandra, Riak

dis, PostgreSQL
HStore, LevelDB

a (inspired by
both BigTable
and Dynamo)

, BigCouch

Table 1: Database types for big data
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Prefer availability
over consistency

When you need
to store
collections of

objects that lack a
fixed schema and

are linked
together by
relationships.
Reasoning about
the data can be
done via
traversals in a
graph database
instead of
complex queries
in SQL.

Neodj, OrientDB,

Prefer
consistency
over availability.

When you want
a scalable
version of a
relatonal
database that
handles SQL
queries
eficienty but
can also scale
horizontally and
provide sftrong
ACID
guarantees

VoltDB, SQLfire

Giraph, Titan
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Figure 11: Storage technologies map

Graph
databases
Document
databases

BigTable,

Dynamo
clones

Key-value
Relational store
databases

COMPLEXITY

SIZE

Figure 12: Data complexity vs amount of data various classes of databases can handle [15]

Performance Assessment and Representative Benchmarks

As discussed earlierin this section, overthe pastfew years various types of database and NoSQL solutions have
proliferated and differentiated themselves into key-value stores, document databases, graph databases, and NewSQL.
Because of the different niches addressed by these solutions, trying to evaluate the database landscape fora particular
class of problemisanimportant but increasingly difficult task.
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Different databases use differingmethods in how datais stored and accessed. Some databases, such as Couchbase and
MongoDB, are intended to run on hardware where most of the working setis cached in RAM. Other databases, such as
Aerospike, are optimized fordirect writes to solid state disk (SSD), which would givethem an advantage for benchmarks
that involve lot of inserts. While in-memory databases have latency and throughput advantages, there may be scaling
issuesthatcome into play when large datasets are being handled. SSDs have higher densities and lower per-gigabyte
costs than RAM, so it should be possibleto scale much larger datasets on fewernodes for SSD databases—valuable
when talking about very large amounts of data. Scaling by adding more RAM-based machines mayend upincurringa
higherrecovery-from-failure cost as a greater number of machinesincura higherrate of failures.

In addition to the differingtechnologies used for storing dataand achieving fault-tolerance, benchmarks also need to
contend with the fact thatreal-world usage will have all types of scenarios forthe mannerin which data has to be
accessed and be reliable. In one benchmark’s study, two common scenarios were examined: applications that have
strong durability needs, in which every transaction must be committed to disk and replicated in case of node failure, and
applications thatare willingtorelax theserequirementsin ordertoachieve the highest possible speed [16]. Another
study examined the throughputs and latencies achievablein a variety of scenarios including read-only transactions,
reads and writes, writesonly and so forth [17]. Anotherstudy from AmpLab at UC Berkeley compared Shark with some
representative databasesin three different scenarios for specifictypes of queries [18].

In general, itis difficult to make definitive statements about performance in this fast evolving landscape. Performance is
highly dependent onthe query engine used, the storage architecture, and the mannerin which data has been stored.
Figure 11 ismeantto be suggestive of broad categories of relative performance, and should not be read as a definitive
ordering. Figure 12 shows how the various categories of databases compare regarding the complexity of the dataitems
they store versusthe size of the data they can handle.

Analytics

Machine Learning Algorithms

Machine learningtechniques allow automaticand scalable ways in which insights from large, multi-dimensional data can
be gleaned. Broadly, machine learningis the ability for computers to automatically learn patterns and make inferences
from data. These algorithms can be classified along many different axes.

Algorithm Type

This classificationisshownin Figure 13.
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Polynomial

MARS
Regression

Decision trees

Supervised Classification
Naive Bayes

Support
vector

Clustering I
machines

Unsupervised

Dimensionality K-means
reduction

Gaussian
Machine mixtures
learning
algorithms Principle
component
analysis

Active
Semisupervised
Co-training

Markov

decision
Re-enforcement process

Q-learning

Figure 13: Machine learning algorithms

Supervised Learning— This category involves all machinelearning algorithms that map input datato a given targetvalue
or class label(s). Commonly known algorithms include classification, which is the prediction of categorical labels
(classes), and regression/prediction, which is the prediction of continuous-valued variables. Inthese algorithms, the
learnerapproximates amappingfunction from afeature vectorto a setof classes (inthe case of classification) orvalue
(inthe case of regression) overalarge setof training data. The necessary condition for the training datais the presence
of human labelsforevery datapoint. Such labelingis not entirely feasibleforvarious big dataapplicationsin whichitis
expensive to obtain human labels for potentially millions of data points. However, anumber of big data applications
existtoday that have successfully utilized smallertraining datasets to achieve state-of-the-art performance on large,
unlabeled real world datasets. Some of the most widely used toolsin this category include the following for
classification: Neural Networks, Decision Trees, Support Vector Machines, and Naive Bayes; and the following for
regression/prediction: Linear regression, Polynomial regression, Radial basis functions, MARS, and Multilinear
interpolation.

Unsupervised Learning - This category involves all machine learning algorithms that learn the hidden structure of input
data without requiring associated human labels. Commonly known algorithms include clustering and source signal
separation. The necessary condition forthe input datais the presence of representative features that can be exploited

for meaningfulknowledge discovery. Thistechnique is especially suited to big data as applications have easy access to
an abundance of large unlabeled datasets that can be processed with this learning framework. Some of the most widely
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used toolsinthis category include K-Means Clustering, Gaussian Mixture Modeling, Spectral Clustering, Hierarchical
Clustering, Principal Component Analysis and Independent Component Analysis.

Reinforcement Learning - This categoryinvolves all machinelearning algorithms thatlearn amapping function between
observations and actions so as to maximize areward function. The learning algorithmiis typically optimized to take an
actionthat will yield maximum reward over a period of time. Such learning algorithms, though popularin Robotics, have
seen limited exploration in big datacommunity. Two widely used toolsin this category include Markov Decision Process
and Q-Learning.

Semi-Supervised Classification - This category uses small amounts of labeled data and fuses thisinformation with large,
unlabeled datasets to approximate an appropriate learningalgorithm. This class of algorithms is specifically interesting
for the big data community asthe invariable presence of large unlabeled datasets is not well exploited by traditional
supervised learning algorithms. On the other hand, semi-supervised learning techniques exploit structural commonality
between labeled and unlabeled datain an efficient mannerto generalize the functional mapping overlarge datasets. A
few subcategories of algorithms in this taxonomy include Generative Models, Graph-Based Models and Multi-View
Models. Some of the most widely used tools in this category include Active Learning, Transfer Learning and Co-Training.

Data Mining by Variety

While the above classificationis appropriateforsimple, structured datasets, complex, unstructured datasets require and
benefitfrom further characterization. There are six broad categoriesin which this datavariety can be categorized, and
the machine learningalgorithms mentioned in the previous section can be adapted and/or strengthened in various ways
inorder to apply tothese various types of unstructured datasets.

¢ Time Series Data — A vast majority of big data applications are sensitive to time, so applying scalable machine
learningalgorithms totime series databecomesanimportant task. Time series data are sequences of values or
events obtained overrepeated measurements of time, forinstance, stock market data. Existing algorithms that can
successfully model timeseries datainclude Hidden Markov Models, Markov Random Fields (Spatio-Temporal
Modeling) and Conditional Random Fields. Scaling these algorithms to big data is an active research topic. Recently,
researchers have successfullyscaled atraditional Dynamictime warping (DTW) algorithm to trillions of data points.

e Streaming Data — Data here is constantly arriving, forinstance, from remote sensors, retail transactions, surveillance
systems, Internet traffic, and telecommunication networks. To handle this type of datarequirement, machine
learning algorithms have to be appliedin an online fashion. Most machine learning algorithms require batch
processing of datasuch as clusteringthat needs tolook at whole datain one pass to learn meaningful clusters. Such
techniques are notscalable to streaming datawhere itis computationally infeasible to store past data. Recently, a
number of distributed machinelearning algorithms have been proposed that approximate such offline algorithms to
streaming data, including distributed k-means and distributed SVD. A few tools thatimplement these algorithms
include Apache Mahoutand Vowpal Wabbit. Onthe otherhand, there are a few algorithms that address these
challenges algorithmically such as Linear SVM, Kernel SVM, and Parallel Tree Learning.

e Sequence Data — Sequence data consists of sequences of ordered elements or events that are recorded with or
withouta concrete notion of time [19]. The analysis of sequential dataarisesin many different contexts, including
retail dataanalysis (determining whether customers that buy one type of item are more likely to buy another type of
item), oranalysis of DNA and protein sequences. Machine learning algorithms used here frequently include Hidden
Markov Models and Sequence alignment algorithms (such as BLAST for local alignment for DNA sequences).
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e Graph Data — Many problems are naturally modeled as graphs, including problems that require the analysis of social
networks, the analysis of the World Wide Web, the analysis of biological networks, and the analysis or synthesis of
protein structures. Almost all large-scale graph mining algorithms can be efficiently represented in matrix format
thereby necessitating large scale matrix solvers. Existing techniques that have been shown to performatsuch large
scaleinclude Collaborative Filtering, Singular Value Decomposition (SVD), and Page Rank. Two tools thataim to
addressthis challenge are Presto and GraphLab.

e Spatial Data — Spatial databases hold space-related data such as maps, medical imaging data, remote sensing data,
VLSl chip layout dataand so forth. Because of spatial relationships between data, the data cannot be assumedto be
completelyindependent; learning algorithms can exploit this fact.

e MultimediaData— This category includesimages, videos, audio, and text markups. Mining algorithms for this
category willinclude many digital signal processing techniques forimage segmentation, motion vector analysis, and
model construction.

The classification of data by variety can easily be mapped to different vertical segments of industry where specificuse
casesarise; for instance, financialwith time series orsocial networking with graph data. Some categories may span
multiple types of data; for instance, large-scale science may involve nearly all types of these dataand miningalgorithms.

Statistical Techniques

Machine learningis notthe only paradigm for making sense of big data. Statistical techniques have been the standard
way of analyzing datafor a longtime indeed. Some people have argued that the only difference between statistical
techniques and machine learning techniques is terminology. Table 2summarizes some of the common concepts that
have been called by different names by these two communities (the machine learning community and the statistics
community) [20]:

MACHINE LEARNING STATISTICS

Network, Graphs Model

Example/instance Data point

Label Response

Weights Parameters

Feature Covariate

Learning Fitting/Estimation
Generalization Test set performance
Supervised learning Regression/Classification
Unsupervised learning Density estimation, Clustering
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Table 2 Glossary of terms in machine learning versus statistics

While there are many similarities and seemingre-inventions, itis also true that there are machine learningalgorithms
that do notinvolve probability or statistics at all; for instance, support vector machines and artificial neural networks. In
addition, because big dataanalysis frequently involves not only large amounts of data, but also high dimensionality,
computational issues are important considerations. Machine learning algorithms also have to focus on computational
issuesthattraditional statistical formulations have ignored. Hence, in many ways, it could be argued that statistical
techniques and paradigms are a subset of machine learning techniques. More philosophical discussions can be entered
intovis-a-vis the statistician’s interestin modeling and inference as compared to the machine learner’sinterestin
algorithms and prediction, butthatis beyond the scope of thisdocument.

Anothertermthat isfrequently usedinthe literatureis “datamining.” Thisis a more general term that refersto the
entire range of techniques for drawinginferences and making predictions from data. Hence, machine learning
techniques are asubset of data miningtechniques that may also include visualization techniques used by human beings
to make inferences and predictions.

No
Yes
>50 Get more
samples? data
Predicting a
category?
Do you have Predicti
CLASSIFICATION labeled data? quantity? REGRESSION

Just looking?

DIMENSIONALITY
REDUCTION

CLUSTERING

Figure 14: Machine learning flow chart

Figure 14 shows a basicflow chart for deciding which class of learning algorithms to use when embarking on data
analysis.
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Metrics for Evaluating Classifiers and Predictors
Classifiers and predictors can be evaluated onthe following five broad parameters:

e Accuracy: the ability of the given classifier or predictorto correctly predict the class label orvalue of new data or
previously unseen data (i.e., tuples without class label information)

e Speed:the computational costsinvolvedin generatingand usingthe given classifier or predictor

o Robustness: the ability of the classifier or predictor to make correct predictions given noisy data or data with
missingvalues

e Scalability: the ability to construct the classifier or predictor efficiently given large amounts of data

o Interpretability: the level of understandingand insight thatis provided by the classifier or
predictor(interpretability is subjective and therefore more difficult to assess)

The accuracy of a classifieron a giventestsetisthe percentage of tuplesthatare classified correctly (these test set
tuples with labels should not have been used to train the classifier). Similarly, the accuracy of a predictorrefersto how
wellagiven predictor can guessthe value of the predicted attribute for new or previouslyunseen data. The error rate or
misclassification rate of a classifieris simply the remaining percentage of tuples that were not classified correctly.

For a classifierwith mclasses, aconfusion matrixisan m x m table. Anentry CM_i_j inthe table indicates the number of
tuples of classi that were labeled as classj. If a classifier has good accuracy, most of the non-diagonal entries of the
table should be close to zero. From the confusion matrix, other metrics can be computed, such as precision and
sensitivity.

For a predictor, the accuracy is computed by a metric, such as the root mean squared error overa testset. Accuracy can
be estimated usingone or more testsets that are independent of the training set. Estimation techniques, such as cross-
validation and bootstrapping, need to be discussed.

When a learneroutputs a classifierthatis 100% accurate on training data but, say, 50% accurate on testdata, whenit
could have been 75% accurate on both, then we say that the learnerhas overfit. Overfitting can be measured using bias
and variance. Biasisthe learner’'stendency to learn the same wrongthing, whilevariance is the tendency to learn
random thingsirrespective of the real thing [38].

The generalization errorfora learnercan be expressed as the sum of bias squared and the variance. Hence, thereisa
tradeoff when minimizing the generalization error between minimizing bias and variance simultaneously. If the
generalization erroris minimized by minimizing the variance, then the bias might be highand we get extreme
underfitting. If the biasis low, but the variance high, then we get overfitting.

Visualization

Most commonly used big data visualization techniques can be broadly classified into the following three categories
(Figure 15).

Spatial Layout Visualization—This class of visualization techniques referto formulations that uniquely map adata
objectto a specificpointonthe coordinate space. The primary motivation of such techniquesis the cognitive ability of
humansto easilyinterpretinformation organized as aspatialsubstrate. Commonly used spatial layout visualization
techniquesinclude line charts, bar charts, scatter plots, etc. However, these graphics are often limited by theirinability
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to visualize complexrelationshipsin data. One such example of acomplex relationshipis the presence of hierarchyin
data objects, often visualized using treemaps [21]. Another example of a popular spatial layout visualization techniqueis
a graph or network layout visualization in which the presence of nodes and edges |leads tointeresting insights from data.
Force-directed graph drawingalgorithm [22] is an example of avisualization algorithm.

Charts &

Plots
Trees &
Graphs

Forced-graph

drawing

Data Cubes
Binning
Histogram
Binning
. Hierarchical
Clustering — -

Microsoft
Pivot Viewer

Line & Bar
Charts

Scatter Plots

Tree Maps

Spatial
Layout

Arc Diagrams

Visualization Abstract or
algorithms Summary

Interactive or
Real-time

Tableau

Figure 15: Taxonomy for visualization techniques

Abstract/Summary Visualization— Often big data analytics require datato be processed atscale (e.g. billions of records,
terabytes of data) before any meaningful correlations can be discovered. Scaling existing visualization techniques at this
level becomes anon-trivial task. A new class of visualization techniques has been proposed lately that process and
abstract or summarize such large-scale data before rendering it to visualization routines [23]. These techniques fall
under Interactive Visualization methods. Common examples of data abstractionis binningitinto histograms or
presentingthem as data cubes. A number of clustering algorithms have also been proposed that extend binning-based
summarization of datato novel concepts. They have the added advantage of providing acompact, reduced dimension
representation of data.

Interactive/Real-Time Visualization—A more recent class of techniquesfall underinteractive visualization that have to
adapt to userinteractionsinreal-time. Such techniques necessitate that even complex visualization mechanisms take
less than a second for a real-time navigation of data by a user [24]. These techniques are quite powerfulin the sense
that they allow usersto rapidly discoverimportantinsightsin the dataand prove or disprove different datascience
theories ontop of such insights. Such techniques are also crucial to industries that rely greatly on data-driven insights.
Today a number of industry software, such as Microsoft Pivot Table and Tableau, employ similar strategies for
interactive visualization.
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Security and Privacy

The Security and Privacy challenges for big data may be organized into fouraspects of the big data ecosystem as
depictedinFigure 16:

1. Infrastructure Security

2. Data Privacy

3. Data Management

4, Integrity and Reactive Security

Securingthe infrastructure of big data systemsinvolves securing distributed computations and data stores. Securing the
dataitselfis of paramountimportance, so we have to ensure thatinformation dissemination is privacy-preservingand
that sensitivedatais protected through the use of cryptography and granular access control. Managing enormous
volumes of data necessitates scalable and distributed solutions for not only securing data stores but also enabling
efficientaudits and investigations of data provenance. Finally, the streaming data thatis comingin from diverse end-
points has to be checked forintegrity and can be used to performreal-time analytics for security incidents to ensure the
health of the infrastructure.

We will also discuss the security issues that arise forthe various forms of data discussed earlier.

Streaming Data — There are two complementary security problems for streaming datadepending on whetherthe datais
publicor not. For publicdata, confidentiality may not be an issue, butthe filtering criteria applied by individual clients,
such as governments, may be classified. For private data, confidentiality may be a concern, while at the same time
suitably modified version of the data may be disclosed to achieve specific utilities, such as predictive analytics.

In “Private Searching On Streaming Data” [25], Ostrovsky and Skeith consider the problem of private searchingon
streaming data, where they efficientlyimplement searching for documents that satisfy asecret criterion (such as
presence orabsence of a hidden combination of hidden keywords) under various cryptographicassumptions. In their
scheme, the client can send a garbled transformation of the secret criteriato the filternodes. The filter nodes can apply
the garbled criteriatothe incoming dataresultingin encrypted filtered messages, which only the client can decrypt. This
effectively hides the criteriaas well as the actual data that were filtered.

The continuous nature of streaming time series data presents specialtechnical challengesin hiding the sensitive aspects
of such data. In particular, simple-minded random perturbation of data points does not provide rigorous privacy
guarantees. In “Time series compressibility and privacy” [26], Papadimitriou, et al. study the trade-offs between time
series compressibility and partial information hiding and the implication of this tradeoff on the introduction of
uncertainty aboutindividual values by perturbingthem.
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Figure 16: Security and privacy classification

Graph Data — In “Private analysis of graph structure” [27], Karwa, et al. present efficientalgorithms for releasing useful
statistics about graph data while providing rigorous privacy guarantees. Theiralgorithms work on datasets that reflect
relationships between individuals, such as social ties or email communication. The algorithms effectively hide the
presence orabsence of any particular relationship. Specifically, the algorithms output approximate answers to subgraph
counting queries. Given aquery graph such as a triangle or a star, the goal is to return the number of isomorphiccopies
of the query graphin theinputgraph.

Scientific— Often scientificdatais notrequiredto be confidential. Nevertheless, integrity of data, especially coming from
remote sensornodes, hasto be ensured. Lightweight, short signatures have been proposedinthe literature, which can
be usedfor such tasks. While there isavast literature on digital signatures, some examples are [28], [29], and [30],
which are geared towards producing short signatures.

However, in many scientificapplications, sensors are deployed in open environments, and hence are vulnerable to
physical attacks, potentially compromising the sensor’s cryptographickeys. In [31], the authors propose aframework for
secure information aggregation in large sensor networks, which addresses key compromise by attackers. Intheir
framework, certain nodesinthe sensor network—called aggregators —help aggregate information requested by a
guery. By constructing efficientrandom sampling mechanisms and interactive proofs, the useris enabled to verify that
the answer given by the aggregatoris a good approximation of the true value even when the aggregatorand afraction
of the sensor nodes are corrupted.
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Web - Several standardized cryptographic protocols are in deployment to secure communication onthe web. Afew
examplesare TLS, Kerberos, OAuth, PKI, Secure BGP, DNSSEC (Secure DNS), IEEE 802 Series protocols, IPSecand Secure
Re-routingin Mobile IPv6.

Recently, bigdataanalytics has also enabled analyzing logs generated by web servers for security intelligence and
forensics. Inthe NIST Special Publication 800-92 [32], the authors recommend best practices for organizations to log
data. Because of the widespread deployment of networked servers, workstations, and other computing devices, and the
ever-increasing number of threats against networks and systems, the number, volume, and variety of computersecurity
logs has increased greatly. Thisincrease has created the need for computer security log management, which is the
process for generating, transmitting, storing, analyzing, and disposing of computersecurity log data. The general
recommendations are that organizations should establish policies and procedures forlog management, prioritize log
managementappropriately throughout the organization, create and maintain alog managementinfrastructure, provide
propersupportfor all staff with log management responsibilities, and establish standard log management operational
processes.

Retail and Financial Data — Due to the highly personal nature of retail and financial data of individuals, best practices to
store and transmit the data should always be followed. Some of the existing practices are to keep dataencrypted atrest,
intransit andin infrastructure to ensure properauthorization and authentication of entities accessing the data.
Compliance standards such as PCI DSS for the financial industry also provide security best practices and legal
requirements.

The advent of high volumes of such data has enabled a plethora of analytics techniques that generate information of
highvalue forthird party organizations who desireto target the right demographics with their products. In practice,
such data is shared after sufficient removal of apparently uniqueidentifiers by the processes of anonymization and
aggregation. This processisad-hoc, often based on empirical evidence [33] and has led to many instances of “de-
anonymization”in conjunction with publicly available data[34]. Sharing of analytics thatis devoid of personal
information can actually be seenasan end goal. However, third parties and research organizations often want to do
studies and analytics of theirown, and for that, distilling useful but rigorously sanitized data remains a challenge.

Several formal models to address privacy preserving datadisclosure have been proposed [35]. One of the strongest
modelsisthe framework of Differential Privacy [36]. In “GUPT: privacy preserving dataanalysis made easy” [37], the
authors present the design and evaluation of asystem called GUPT that guarantees differential privacy to programs not
developed with privacy in mind. GUPT uses a model of data sensitivity that degrades privacy of data overtime. This
enables efficient allocation of different levels of privacy for different userapplications while guaranteeing an overall
constantlevel of privacy and maximizing the utility of each application.

Conclusion

We have given the beginning of the taxonomy of the big datalandscape alongsix of the mostimportant dimensions. The
six dimensions are data domains, compute infrastructure, storage architectures, analytics, visualization, security and
privacy, and data domains. Big data infrastructure and methodology continueto evolve at afast pace, but the underlying
technologiesthey are based on have, in many cases, beeninvented many years ago. The greatly increased digitization of
human activity and machine-to-machine communications, combined with large scale inexpensive hardware, is making
practical many previously academicideas of parallel and distributed computing, along with new tweaks necessary to
make them even more useful inreal world applications.
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