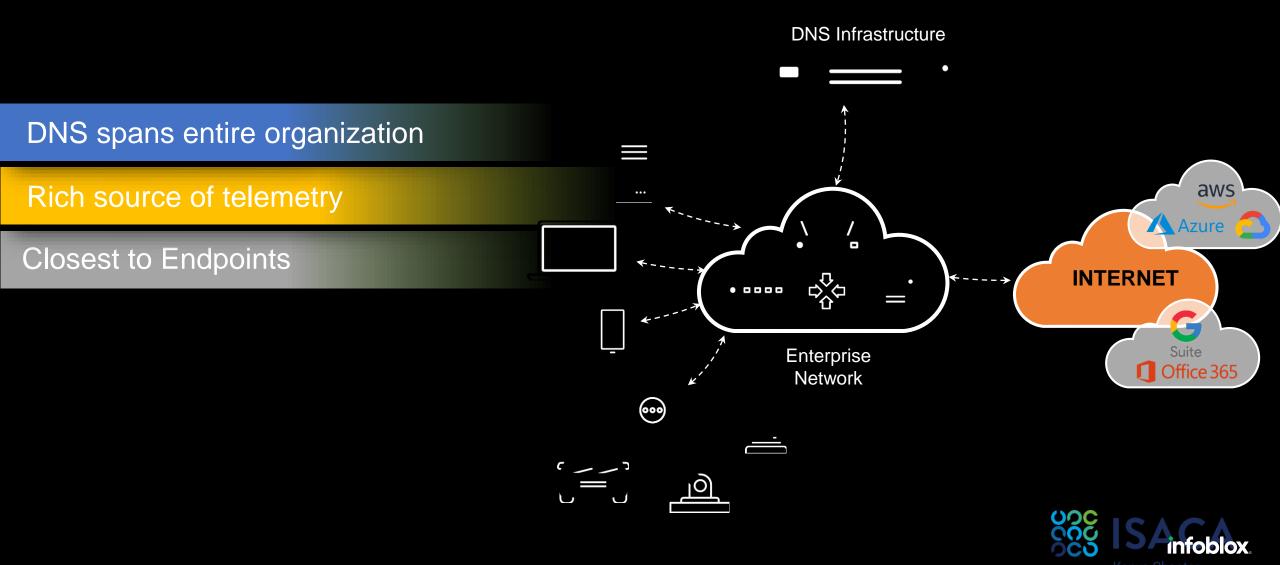
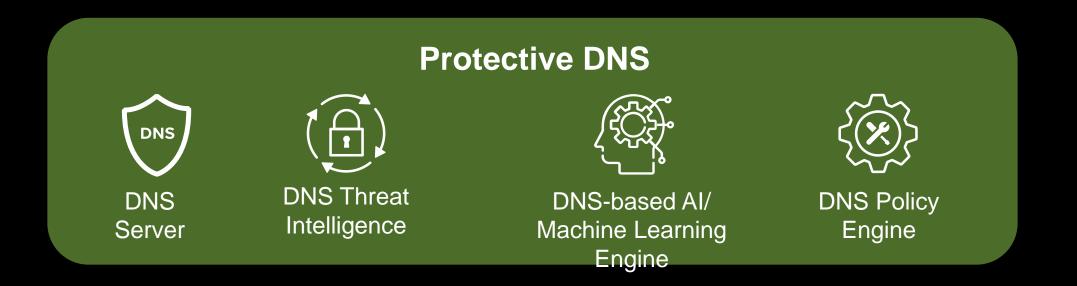

DNS and Compliance

Prepared by: John Mutama

April 2024

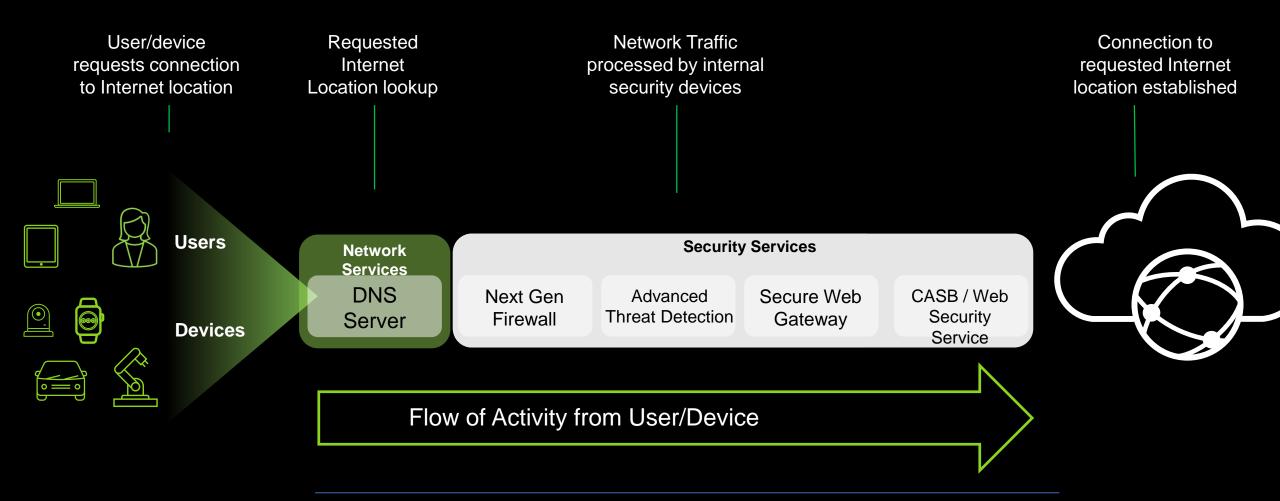


The DNS Gap – A Multi Dimensional Threat Vector						
Making Your Infrastructure Work Against You		84% eflection/amplification attacks use DNS ¹	>\$500 Per min cost of downtime due to DDoS attack ²	\$1.5M Average cost per year to deal with DNS attacks ²		
The Leading Culprit in Data Exfiltration	\$4M Average consolidated cost of a data breach ³	% of survey re		45% of survey respondents that xperienced DNS tunneling ⁴		
APT/Malware Proliferation Rooted in DNS	91% Of malware uses DNS to carry out campaigns ⁵	New unique pie	1 M ces of malware in Ma 015 ⁶	#1 Iware C&C is #1 responsible vector for crimeware ⁷		
Ineffective Threat Intelligence	70% of survey respondents that felt Threat Intel is not timely ⁸	46% % of survey responde prioritize the threat	ents unable to % of survey	45% respondents lacked context intel to make it actionable ⁸		
 Arbor WISR2016 Report Ponemon Institute Study – The Cost of Denial-of-S Source: Ponemon Institute, 2016 Cost of Data Breat Source: SC Magazino, Dep 2014 "DNS ottacko put 	ach Study		Breach Investigations Report nstitute, 2015 Second Annual Study on Exchange C	yber Threat Intelligence		


Kenya Chapter

Source: SC Magazine, Dec 2014, "DNS attacks putting organizations at risk, survey finds"
 Source: Cisco 2016 Annual Security Report
 Symantec 2016 Internet Security Threat Report

VALUE OF DNS IN SECURITY



EVOLVING YOUR DNS TO PROTECTIVE DNS

STEPS IN AN ATTACK SEQUENCE

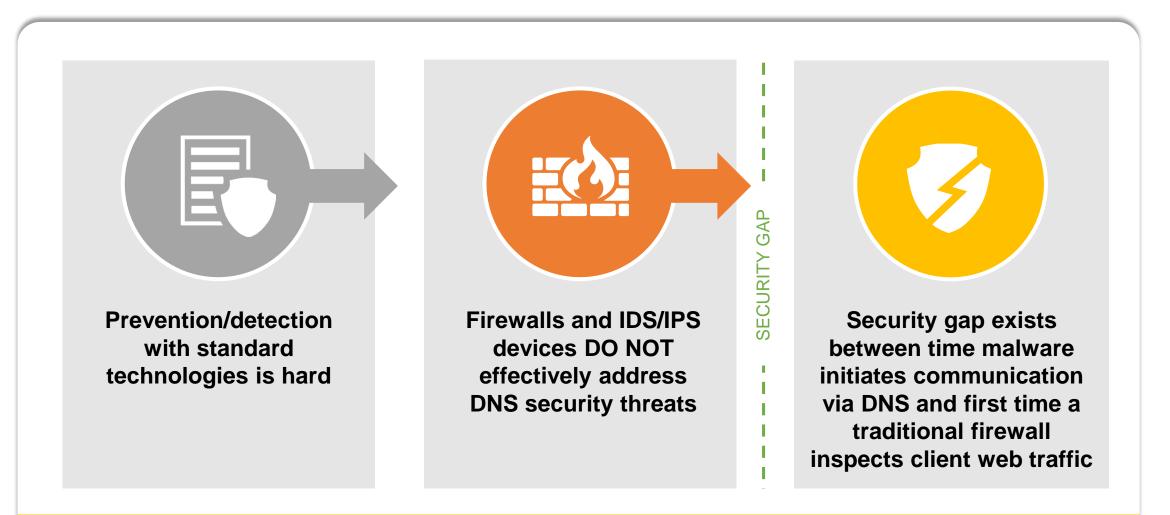
SHIFTING PROTECTION ALL THE WAY TO THE LEFT

At the earliest point with Protective DNS

Selecting a Protective DNS Service

EC starts developing DNS internet infrastructure for 100 million people

NEWS | BROADBAND | EUROPE | 07:15 | 🗍 BOOKMARK


The European Commission (EC) plans to onboard 100 million people to a new EU-based DNS internet infrastructure. The DNS4EU will be developed by international consortium led by Czech company Whalebone.

The goal of DNS4EU is to provide EU citizens, companies, and institutions with a secure, privacy compliant, and powerful recursive DNS, an "address book of the internet" enabling browsing web via domain names instead of strings of numbers. The project will become a vital part of European internet

Kenya Chapter

sovereignty.

Defense-in-Depth and DNS Security Gap

A DNS security layer is needed in addition to firewalls, IDS/IPS, anti-virus, etc. to fill gap

Defense-in-Depth and DNS Security Gap

Reputation

Detect & prevent communications to malware, C2, ransomware

Government-grade threat intelligence

Ecosystem

Signature

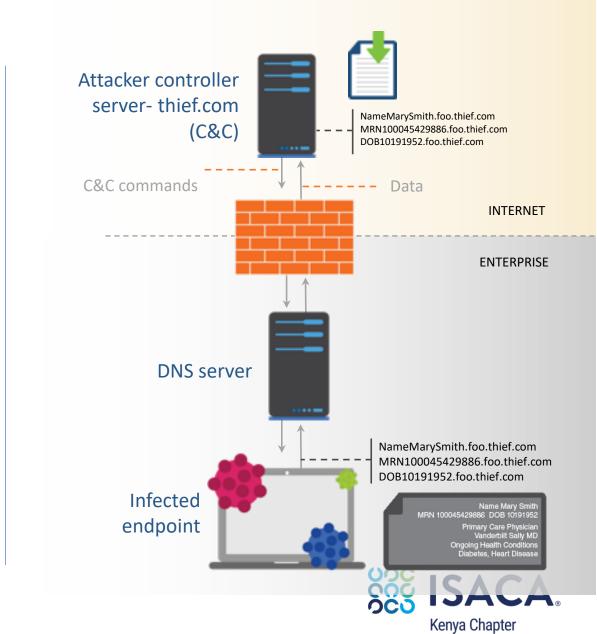
Infrastructure protection for critical core services

Carrier-grade deep packet inspection

Instant identification of popular tunneling tools

01100 10110 Behavior

Patented streaming analytics technology


Detect & prevent data exfiltration

"Machine learning"

Involves at least the following MITRE ATT&CK techniques

- Command and Control
 - Commonly Used Port, Custom Command and Control Protocol, Custom Crypto Protocol, Data Encoding, Data Obfuscation
- Exfiltration
 - Automated Exfiltration, Data Encrypted, Data Transfer Size Limits, Exfiltrate over Command and Control Channel, Scheduled Transfer

Chinese Hackers Using 42,000 Imposter Domains in Massive Phishing Attack Campaign

The Hacker News Subscribe to Newslett Data Breaches Cyber Attacks Vulnerabilities Q Home Webinars Store Contac Chinese Hackers Using 42,000 Imposter Domains in Massive Phishing Attack Campaign **Trending News Stories** 🛗 Nov 17, 2022 🛛 🛔 Ravie Lakshmanan ctim clicks or ackers Exploiting WordPress mentor Pro Vulnerability Millions of Sites at Risk stern Digital Hit by Network Security Breach - Critical Digita ecaba.liv ervices Disrupted Downloads malicid control.kochava.com "Fbvideo595_pxz.ap 1/94 VT Detections acti, Realtek, and IBM Aspera aspex Vulnerabilities Under ctive Exploitation orschach Ransomware Emerges: Experts Warn of video-downloader.b-cdn.net goaaa.com speeen.icu dvanced Evasion Strategies 4 VT Detection icrosoft Fixes New Azure AD Vulnerability Impacting Bing Search and Major Apps A China-based financially motivated group is leveraging the trust associated with popular international brands to orchestrate a large-scale phishing campaign dating back as far as 2019. ew Wi-Fi Protocol Security Flat Affecting Linux, Android and iOS lovices The threat actor, dubbed Fangxiao by Cyjax, is said to have registered over 42,000 imposter domains with initial activity observed in 2017

The Hacker News, Nov 17, 2022

NIST FRAMEWORK

Guidelines published by Natl. Institute of Standards & Technology used for mitigating Cybersecurity risks

Categor y	DNS is Foundational & works across entire Cybersecurity Lifecycle
IDENTIFY	 <u>Core DDI</u> – Single source of truth for identification of network assets <u>DHCP Fingerprinting</u>- Maps IP to MAC/OS to identify BYOD devices in real-time & w/ addl. infrastructure (operationally efficient) <u>Network Insight</u> – Automated device discovery
PROTECT/ DETECT	 <u>Threat Insight Engine</u>- uses ML to detect & block Day 0 DNS APT's (DNS Data Exfil, DNS-T, DGA's) Diversified set of Reputational <u>Threat Feeds</u> (Domains, URLs, IPs) <u>ADP</u> (DDOS Protection) protects DNS Server Infrastructure
RESPOND/ RECOVER	 <u>DDI Contex</u>t for faster & more accurate IR (Who, What, Where) <u>DOSSIER</u>- Threat Intel tool for faster Incident Response by investigating known bad or suspicious Domains <u>Ecosystem</u> Mitigation- forwards DDI Context + Threat Intel across the entire Security Arch (NGFW, NAC, Endpoints, SIEM)

MITRE ATT&CK FRAMEWORK (v10)

14 Attacker tactics (Goals) & 188 techniques (Methods) based on real-world observations

Initial Access: Spam w/ Phishing links is a common technique used to penetrate networks & launch RW. B1TD blocks MW connection when a user clicks.

<u>C&C</u>: Once infected, MW calls C2 to get instructions. C2 is a Tactic & DNS is a commonly used Protocol & Technique. B1TD block C2 connections.

Exfiltration: B1TD uses ML Models to block DNS Data Exfil attempts based on recognizing anomalous strings of data within the DNS Query. These Day Zero DNS APT's are dynamic & typically evade traditional layers.

Enterprise Matrix

The full ATT&CK Matrix[™] below includes techniques spanning Windows, Mac, and Linux platforms and can be used to navigate through the knowledge base.

Last Modified: 2019-07-01 17:29:19.726000

Initial Access	Execution	Persistence	Privilege Escalation	Defense Evasion	Credential Access	Discovery	Lateral Movement	Collection	Command and	Exfiltration
Drive-by Compromise	AppleScript	.bash_profile and .bashrc	Access Token <u>Manipulation</u>	Access Token Manipulation	Account Manipulation	Account Discovery	AppleScript	Audio Capture	Commonly Used Port	Automated Exfiltration
Exploit Public- Facing Application	CMSTP	Accessibility Features	Accessibility Features	Binary Padding	Bash History	Application Window Discovery	Application Deployment Software	Automated Collection	Communication Through Removable Media	Data Compressed
External Remote Services	Command-Line Interface	Account Manipulation	AppCert DLLs	BITS Jobs	Brute Force	Browser Bookmark Discovery	Distributed Component Object Model	Clipboard Data	Connection Proxy	Data Encrypted
Hardware Additions	Compiled HTML File	AppCert DLLs	AppInit DLLs	Bypass User Account Control	Credential Dumping	Domain Trust Discovery	Exploitation of Remote Services	Data from Information Repositories	Custom Command and Control Protocol	Data Transfer Size Limits
Replication			Application	Clear Command				Data from	Custom	Exfiltration
Through Removable Media	Control Panel Items	AppInit DLLs	Shimming	Clear Command History	Files	File and Directory Discovery	Scripts	Local System	Cryptographic Protocol	Alternative Protocol
Spearphishing Attachment	Dynamic Data Exchange	Application Shimming	Bypass User Account Control	CMSTP	Credentials in Registry	Network Service Scanning	Pass the Hash	Data from Network Shared Drive	Data Encoding	Exfiltration Over Command and Control Channel
Spearphishing LNik	Execution through API	Authentication Package	DLL Search Order Hijacking	Code Signing	Exploitation for Credential Access	Network Share Discovery	Pass the Ticket	Data from Removable Media	Data Obfuscation	Exfiltration Over Other Network Medium
Spearphishing via Service	Execution through Module	BITS Jobs	Dylib Hijacking	Compile After Delivery	Forced Authentication	Network Sniffing	Remote Desktop	Data Staged	Domain Fronting	Exfiltration Over Physical

Lookalike Domain Detection

google.com	google.com	google.com	Text
google.com	xnggle-0nda.com	xnggle-55da.com	Punycode

